Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (1): 165-175   https://doi.org/10.1007/s11708-020-0686-z
  本期目录
UPFC setting to avoid active power flow loop considering wind power uncertainty
Shenghu LI(), Ting WANG
School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China
 全文: PDF(1111 KB)   HTML
Abstract

The active power loop flow (APLF) may be caused by impropriate network configuration, impropriate parameter settings, and/or stochastic bus powers. The power flow controllers, e.g., the unified power flow controller (UPFC), may be the reason and the solution to the loop flows. In this paper, the critical existence condition of the APLF is newly integrated into the simultaneous power flow model for the system and UPFC. Compared with the existing method of alternatively solving the simultaneous power flow and sensitivity-based approaching to the critical existing condition, the integrated power flow needs less iterations and calculation time. Besides, with wind power fluctuation, the interval power flow (IPF) is introduced into the integrated power flow, and solved with the affine Krawcyzk iteration to make sure that the range of active power setting of the UPFC not yielding the APLF. Compared with Monte Carlo simulation, the IPF has the similar accuracy but less time.

Key wordsactive power loop flow (APLF)    unified power flow controller (UPFC)    wind power uncertainty    interval power flow (IPF)
收稿日期: 2019-09-20      出版日期: 2023-03-29
Corresponding Author(s): Shenghu LI   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(1): 165-175.
Shenghu LI, Ting WANG. UPFC setting to avoid active power flow loop considering wind power uncertainty. Front. Energy, 2023, 17(1): 165-175.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-020-0686-z
https://academic.hep.com.cn/fie/CN/Y2023/V17/I1/165
Fig.1  
Fig.2  
Fig.3  
Fig.4  
  
  
Fig.5  
Loop Branch Active power flow/(p.u.) Critical branch
L1-1 1-2 0.1043 1-2
1-39 –1.0803
4-5 0.5595
L1-2 4-14 0.4079 4-14
15-16 0.6481
L2 3-18 2.8252 17-18
14-15 –3.1751
16-17 –1.4965
17-18 –1.2359
Tab.1  
Loop Critical branch Power flow sensitivity model Integrated power flow model Pref/(p.u.)
Iteration of power flow calculation Total iteration Time/s Iteration Time/s
L1-1 1-2 2 8 0.321 5 0.031 –4.6564
L1-2 4-14 2 8 0.302 5 0.023 –4.3438
L2 17-18 3 12 0.677 5 0.099 2.9461
Tab.2  
Fig.6  
Loop Branch Iteration Pwt/(p.u.)
L1-1 1–2 5 0.3125
L1-2 4–14 5 1.2504
15–16 5 0.9437
L2 3–18 Divergence
4–14 Singularity
14–15 Divergence
15–16 Divergence
16–17 5 –2.2320
17–18 5 –2.1146
Tab.3  
Fig.7  
Loops Branches Iteration Pwt/(p.u.) Loops Branches Iterations Pwt/(p.u.)
L3-1 1-2 6 3.3574 L3-2 3-18 Singularity
1-39 Singularity 4-14 5 –1.3657
2-3 Singularity 14-15 Singularity
4-5 5 –0.7936 15-16 Singularity
5-8 Singularity 16-17 Singularity
8-9 Singularity 17-18 Singularity
9-39 Singularity
L4 3-18 Singularity L4 15-16 Singularity
4-14 Singularity 16-17 Singularity
14-15 Singularity 17-18 Singularity
Tab.4  
Critical branch Wind speed
/(m·s–1)
Method Lower active power
Setting/(p.u.)
Upper active power
Setting/(p.u.)
Iteration Time/s
4–14 [5, 9.19] Monte Carlo –4.8393 –4.4396 27.1
IPF –4.8397 –4.4397 2 17.6
15–16 [5, 9.19] Monte Carlo –5 –4.2736 25.7
IPF –5.0003 –4.2736 2 16.7
17–18 [5,15] Monte Carlo 1.0242 2.7694 26.3
IPF 1.0221 2.7688 2 17.7
Tab.5  
Fig.8  
Fig.9  
1 G Sadjad, T H Mehrdad, B B S Mohamad. Unified power flow controller impact on power system predictability. IET Generation, Transmission & Distribution, 2013, 8(5): 819–827
2 S Golshannavaz, F Aminifar, D Nazarpour. Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations. IEEE Transactions on Smart Grid, 2014, 5(4): 1961–1968
https://doi.org/10.1109/TSG.2014.2304071
3 W M Lin, K H Lu, T C Ou. Design of a novel intelligent damping controller for unified power flow controller in power system connected offshore power applications. IET Generation, Transmission & Distribution, 2015, 9(13): 1708–1717
https://doi.org/10.1049/iet-gtd.2014.1188
4 L Wang, H W Li, C T Wu. Stability analysis of an integrated offshore wind and seashore wave farm fed to a power grid using a unified power flow controller. IEEE Transactions on Power Systems, 2013, 28(3): 2211–2221
https://doi.org/10.1109/TPWRS.2013.2237928
5 P Wei, Y X Ni, F F Wu. Load flow tracing in power systems with circulating power. International Journal of Electrical Power & Energy Systems, 2002, 24(10): 807–813
https://doi.org/10.1016/S0142-0615(02)00008-X
6 A Marinakis, M Glavic, T Van Cutsem. Minimal reduction of unscheduled flows for security restoration: application to phase shifter control. IEEE Transactions on Power Systems, 2010, 25(1): 506–515
https://doi.org/10.1109/TPWRS.2009.2030423
7 S Lauria, F Palone. Maximum undergrounding degree of HV sub transmission networks as dictated by unscheduled power flows. IET Generation, Transmission & Distribution, 2013, 7(11): 1202–1209
https://doi.org/10.1049/iet-gtd.2012.0295
8 S Cvijić, M D Ilić. Part II: PAR flow control based on the framework for modelling and tracing of bilateral transactions and corresponding loop flows. IEEE Transactions on Power Systems, 2014, 29(6): 2715–2722
https://doi.org/10.1109/TPWRS.2014.2312372
9 M A Sayed, T Takeshita. All nodes voltage regulation and line loss minimization in loop distribution systems using UPFC. IEEE Transactions on Power Electronics, 2011, 26(6): 1694–1703
https://doi.org/10.1109/TPEL.2010.2090048
10 J M Miller, B M Ballamat, K N Morris, J H Malinowski, B M Pastermack, L E Eilts. Operating problems with parallel flow. IEEE Transactions on Power Systems, 1991, 6(3): 1024–1034
https://doi.org/10.1109/59.119242
11 S Li, T Wang, H Zhang, L Wang, Y Jiang, J Xue. Sensitivity-based coordination to controllable ranges of UPFCs to avoid active power loop flows. International Journal of Electrical Power & Energy Systems, 2020, 114: 105383
https://doi.org/10.1016/j.ijepes.2019.105383
12 M Hajian, W D Rosehart, H Zareipour. Probabilistic power flow by Monte Carlo simulation with Latin supercube sampling. IEEE Transactions on Power Systems, 2013, 28(2): 1550–1559
https://doi.org/10.1109/TPWRS.2012.2214447
13 Z A Wang, F L Alvarado. Interval arithmetic in power flow analysis. IEEE Transactions on Power Systems, 1992, 7(3): 1341–1349
https://doi.org/10.1109/59.207353
14 R E Moore, M J Cloud, R B Kearfott. Introduction to Interval Analysis. Philadelphia: Society for Industrial and Applied Mathematics, 2009
15 C Duan, L Jiang, W L Fang, J Liu. Moment-SOS approach to interval power flow. IEEE Transactions on Power Systems, 2017, 32(1): 522–530
https://doi.org/10.1109/TPWRS.2016.2541463
16 T Ding, R Bo, F X Li, Q Guo, H Sun, W Gu, G Zhou. Interval power flow analysis using linear relaxation and optimality-based bounds tightening (OBBT) methods. IEEE Transactions on Power Systems, 2015, 30(1): 177–188
https://doi.org/10.1109/TPWRS.2014.2316271
17 T Ding, X Li, F Li, R Bo, H Sun. Interval radial power flow using extended DistFlow formulation and Krawcyzk iteration method with sparse approximate inverse preconditioner. IET Generation, Transmission & Distribution, 2015, 9(14): 1998–2006
https://doi.org/10.1049/iet-gtd.2014.1170
18 Y Wang, Z Wu, X Dou, M Hu, Y Xu. Interval power flow analysis via multi-stage affine arithmetic for unbalanced distribution network. Electric Power Systems Research, 2017, 142: 1–8
https://doi.org/10.1016/j.epsr.2016.08.024
19 A Vaccaro, C A Canizares. An affine arithmetic-based framework for uncertain power flow and optimal power flow studies. IEEE Transactions on Power Systems, 2017, 32(1): 274–288
https://doi.org/10.1109/TPWRS.2016.2565563
20 L E S Pereira, V M da Costa. Interval analysis applied to the maximum loading point of electric power systems considering load data uncertainties. International Journal of Electrical Power & Energy Systems, 2014, 54: 334–340
https://doi.org/10.1016/j.ijepes.2013.07.026
21 L E S Pereira, V M da Costa, A L S Rosa. Interval arithmetic in current injection power flow analysis. International Journal of Electrical Power & Energy Systems, 2012, 43(1): 1106–1113
https://doi.org/10.1016/j.ijepes.2012.05.034
22 C R Fuerte-Esquivel, E Acha, H Ambriz-Perez. A comprehensive Newton-Raphson UPFC model for the quadratic power flow solution of practical power networks. IEEE Transactions on Power Systems, 2000, 15(1): 102–109
https://doi.org/10.1109/59.852107
23 T Ding, H T Cui, W Gu, Q L Wan. An uncertainty power flow algorithm based on interval and affine arithmetic. Automation of Electric Power Systems, 2012, 36(13): 51–55
24 M Wolfram, S Schlegel, D Westermann. Closed loop flow detection in power system based on Floyd-Warshall algorithm. In: IEEE Manchester PowerTech, Manchester, UK, 2017, 18–22
https://doi.org/10.1109/PTC.2017.7980880
25 I Hiskens. IEEE PES task force on benchmark systems for stability controls report on the 39-bus system (New England Reduced Model). 2020–6-9, available at website of Universidade de Sao Paulo
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed