Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2021, Vol. 15 Issue (2): 460-472   https://doi.org/10.1007/s11708-021-0733-4
  本期目录
Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells
Ahmed Mohmed DAFALLA1, Fangming JIANG2()
1. Laboratory of Advanced Energy Systems, Guangdong Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
2. Laboratory of Advanced Energy Systems, Guangdong Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
 全文: PDF(1336 KB)   HTML
Abstract

Water transport is of paramount importance to the cold start of proton exchange membrane fuel cells (PEMFCs). Analysis of water transport in cathode catalyst layer (CCL) during cold start reveals the distinct characteristics from the normal temperature operation. This work studies the effect of CCL mesoscopic pore-morphology on PEMFC cold start. The CCL mesoscale morphology is characterized by two tortuosity factors of the ionomer network and pore structure, respectively. The simulation results demonstrate that the mesoscale morphology of CCL has a significant influence on the performance of PEMFC cold start. It was found that cold-starting of a cell with a CCL of less tortuous mesoscale morphology can succeed, whereas starting up a cell with a CCL of more tortuous mesoscale morphology may fail. The CCL of less tortuous pore structure reduces the water back diffusion resistance from the CCL to proton exchange membrane (PEM), thus enhancing the water storage in PEM, while reducing the tortuosity in ionomer network of CCL is found to enhance the water transport in and the water removal from CCL. For the sake of better cold start performance, novel preparation methods, which can create catalyst layers of larger size primary pores and less tortuous pore structure and ionomer network, are desirable.

Key wordscold start    energy conversion    fuel cells    mesoscale morphology    tortuosity    water management
收稿日期: 2020-09-25      出版日期: 2021-06-18
Corresponding Author(s): Fangming JIANG   
 引用本文:   
. [J]. Frontiers in Energy, 2021, 15(2): 460-472.
Ahmed Mohmed DAFALLA, Fangming JIANG. Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells. Front. Energy, 2021, 15(2): 460-472.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-021-0733-4
https://academic.hep.com.cn/fie/CN/Y2021/V15/I2/460
Fig.1  
Fig.2  
Fig.3  
Cases Tortuosity Note
tm tg
Case 1 1.5 1.5 Both the ionomer network and pore structure in CLs are less tortuous
Case 2 2.5 2.5 Both the ionomer network and pore structure in CLs are tortuous
Case 3 2.5 1.5 The ionomer network is tortuous, while the pore structure in CLs is less tortuous
Case 4 1.5 2.5 The ionomer network is less tortuous, while the pore structure in CLs is tortuous
Tab.1  
Source term Gas channels GDLs Catalyst layers Membrane
Su 0 μKGDL u μKCL u
SvH2O 0 q˙gsH 2O ? ( ndFie) SvjnFq˙gsH2O ? ( ndFie)
Sv (for reactants) 0 0 SvjnF 0
Sφe j 0
Sφsolid 0 0 j
ST i solid2σ solideff+q ˙gsH2Ohgs j( ηT(Uo)T )+ie2κeeff+isolid2σsolideff+q ˙gsH2Ohgs i e2κeeff
Tab.2  
Description Value
Porosity of GDL 0.6
Porosity of CL (initial) 0.53
Volume fraction of ionomer in CL 0.15
Density of gas mixture/(kg?m-3) 1
Heat capacity of membrane, CL, GDL, bipolar plate/(kJ?m-3?K-1) 1650, 3300, 568, 1580
Heat conductivity of membrane, CL, GDL, bipolar plate/(W?m-1?K-1) 0.95, 1, 1, 20
Heat capacity of ice, frost/ (kJ·m-3·K-1) 3369.6
Heat conductivity of ice, frost/(W?m-1?K-1) 2.4
Latent heat of desublimation/(J·mol-1) 5.1 × 104
Permeability of CL/m2 1 × 10-13
Electronic conductivity of GDL, CL, bipolar plate/(S?m-1) 300, 300, 1 × 107
Equivalent weight of ionomer/(kg·mol-1) 1.1
Density of dry membrane/(kg·m-3) 1980
H2/H2O diffusivity in anode/(m2·s-1) 8.67 × 10-5, 8.67 × 10-5
O2/H2O diffusivity in cathode/(m2·s-1) 1.53 × 10-5, 1.79 × 10-5
Tab.3  
Fig.4  
Fig.5  
Description Value
Cell height, length/mm 2, 600
Land shoulder width/mm 1
Anode, cathode GDL thickness/mm 300, 300
Anode/cathode CL thickness/mm 10, 10
Membrane thickness/mm 30
channel depth, width/mm 1, 1
Initial water content 6.2
Startup temperature/K 253.15
Current density/(mA?cm-2) 100
Anode/cathode stoichiometry 2
Anode/cathode inlet gas temperature/K 253.15
Anode/cathode pressure “absolute”/Pa 1.01 × 105
Tab.4  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
A Side surface area of the bipolar plate/m2
a Water activity
cp Specific heat capacity/(J·kg1·K1)
C Species concentration/(mol·m3)
D Diffusivity/(m2·s1)
EW Equivalent weight of dry membrane/(kg·mol1)
F Faraday’s constant/(C·mol1)
h Latent heat/(J·mol1)
i Exchange current density/(A·m2)
j Transfer current density/(A·m3)
K Permeability/m2
M Molecular weight of gas
n Bruggeman factor
nd Electroosmatic drag coefficient/(H2O/H+ )
p Pressure/Pa
q ˙ Water desublimation rate/(mol·m3·s1)
R Universal gas constant/(J·mol1·K1)
rCCL Water transport resistance in CCL/(s·m1)
rMEM Water transport resistance in membrane/(s·m1)
S Source term
s Ice fraction
t Time/s
T Temperature/K
Uo Equilibrium cell potential/V
u Superficial fluid velocity/(m·s1)
V Cell voltage/V
x, y, z Cartesian coordinates
Greek symbols
δ Thickness/m
ε Porosity
η Activation overpotential/V
κ Ionic conductivity/(S·m1)
κD Diffusional conductivity/(S·m1)
λ Water content/(mol H2O/mol SO3)
ρ Density/(kg·m3)
σ Electronic conductivity/(S·m1)
ϕ Electric potential/V
μ Viscosity/(Pa·s)
ϕe Electrolyte potential
ϕs Electron potential
τ Tortuosity factor
ψ Water back diffusion flux/(mol·m2·s1)
Subscripts/Superscripts
e Electrolyte
eff Effective
g Vapor phase
gs Vapor-solid phase transition
Kn Knudsen
m ionomer phase
MEM Membrane
Nor Normal
0 Initial
s Ice or solid phase
sat Saturated
solid Solid phase
v Species index
w Component (hydrogen, oxygen, or water)
- Average
Vector
  
1 X Y Tai, A Zhakeyev, H Wang, et al.. Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges. Fuel Cells (Weinheim), 2019, 19(6): 636–650
https://doi.org/10.1002/fuce.201900164
2 T Zhang, P Wang, H Chen, et al.. A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition. Applied Energy, 2018, 223: 249–262
https://doi.org/10.1016/j.apenergy.2018.04.049
3 A Ajanovic, R Haas. Economic and environmental prospects for battery electric- and fuel cell vehicles: a review. Fuel Cells (Weinheim), 2019, 19(5): 515–529
https://doi.org/10.1002/fuce.201800171
4 A M Dafalla, F M Jiang. Stresses and their impacts on proton exchange membrane fuel cells: a review. International Journal of Hydrogen Energy, 2018, 43(4): 2327–2348
https://doi.org/10.1016/j.ijhydene.2017.12.033
5 W Pan, P Li, Q Gan, et al.. Thermal stability analysis of cold start processes in PEM fuel cells. Applied Energy, 2020, 261: 114430
https://doi.org/10.1016/j.apenergy.2019.114430
6 S Huo, K Jiao, J W Park. On the water transport behavior and phase transition mechanisms in cold start operation of PEM fuel cell. Applied Energy, 2019, 233–234: 776–788
https://doi.org/10.1016/j.apenergy.2018.10.068
7 Y Luo, K Jiao. Cold start of proton exchange membrane fuel cell. Progress in Energy and Combustion Science, 2018, 64: 29–61
https://doi.org/10.1016/j.pecs.2017.10.003
8 A A Amamou, S Kelouwani, L Boulon, et al.. A Comprehensive review of solutions and strategies for cold start of automotive proton exchange membrane fuel cells. IEEE Access: Practical Innovations, Open Solutions, 2016, 4: 4989–5002
https://doi.org/10.1109/ACCESS.2016.2597058
9 M H Shojaeefard, G R Molaeimanesh, M Nazemian, et al.. A review on microstructure reconstruction of PEM fuel cells porous electrodes for pore scale simulation. International Journal of Hydrogen Energy, 2016, 41(44): 20276–20293
https://doi.org/10.1016/j.ijhydene.2016.08.179
10 J Ko, H Ju. Comparison of numerical simulation results and experimental data during cold-start of polymer electrolyte fuel cells. Applied Energy, 2012, 94: 364–374
https://doi.org/10.1016/j.apenergy.2012.02.007
11 G Gwak, J Ko, H Ju. Effects of porous properties on cold-start behavior of polymer electrolyte fuel cells from sub-zero to normal operating temperatures. Scientific Reports, 2015, 4(1):5770
https://doi.org/10.1038/srep05770
12 L Li, S Wang, L Yue, et al.. Cold-start icing characteristics of proton-exchange membrane fuel cells. International Journal of Hydrogen Energy, 2019, 44(23): 12033–12042
https://doi.org/10.1016/j.ijhydene.2019.03.115
13 F C Cetinbas, R K Ahluwalia, N N Kariuki, et al.. Effects of porous carbon morphology, agglomerate structure and relative humidity on local oxygen transport resistance. Journal of the Electrochemical Society, 2020, 167(1): 013508
https://doi.org/10.1149/2.0082001JES
14 A Ozden, S Shahgaldi, X Li, et al.. The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles. Applied Energy, 2019, 238: 1048–1059
https://doi.org/10.1016/j.apenergy.2019.01.136
15 S Shahgaldi, A Ozden, X Li, et al.. Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells. Energy Conversion and Management, 2018, 171: 1476–1486
https://doi.org/10.1016/j.enconman.2018.06.078
16 S Shahgaldi, I Alaefour, X Li. Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied Energy, 2018, 225: 1022–1032
https://doi.org/10.1016/j.apenergy.2018.05.086
17 J Zhao, A Ozden, S Shahgaldi, et al.. Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells. Energy, 2018, 150: 69–76
https://doi.org/10.1016/j.energy.2018.02.134
18 H W Wu. A review of recent development: transport and performance modeling of PEM fuel cells. Applied Energy, 2016, 165: 81–106
https://doi.org/10.1016/j.apenergy.2015.12.075
19 H Heidary, M Jafar Kermani, N Khajeh-Hosseini-Dalasm. Performance analysis of PEM fuel cells cathode catalyst layer at various operating conditions. International Journal of Hydrogen Energy, 2016, 41(47): 22274–22284
https://doi.org/10.1016/j.ijhydene.2016.08.178
20 C Y Wang. Fundamental models for fuel cell engineering. Chemical Reviews, 2004, 104(10): 4727–4766
https://doi.org/10.1021/cr020718s
21 F M Jiang, C Y Wang. Numerical modeling of liquid water motion in a polymer electrolyte fuel cell. International Journal of Hydrogen Energy, 2014, 39(2): 942–950
https://doi.org/10.1016/j.ijhydene.2013.10.113
22 M Sabharwal, L M Pant, N Patel, et al.. Computational analysis of gas transport in fuel cell catalyst layer under dry and partially saturated conditions. Journal of the Electrochemical Society, 2019, 166(7): F3065–F3080
https://doi.org/10.1149/2.0081907jes
23 Y Hou, H Deng, F Pan, et al.. Pore-scale investigation of catalyst layer ingredient and structure effect in proton exchange membrane fuel cell. Applied Energy, 2019, 253: 113561
https://doi.org/10.1016/j.apenergy.2019.113561
24 G R Molaeimanesh, M H Akbari. Agglomerate modeling of cathode catalyst layer of a PEM fuel cell by the lattice boltzmann method. International Journal of Hydrogen Energy, 2015, 40(15): 5169–5185
https://doi.org/10.1016/j.ijhydene.2015.02.097
25 M Moein-Jahromi, M J Kermani. Performance prediction of PEM fuel cell cathode catalyst layer using agglomerate model. International Journal of Hydrogen Energy, 2012, 37(23): 17954–17966
https://doi.org/10.1016/j.ijhydene.2012.09.120
26 A Z Weber, R L Borup, R M Darling, et al.. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. Journal of the Electrochemical Society, 2014, 161(12): F1254–F1299
https://doi.org/10.1149/2.0751412jes
27 M B Sassin, Y Garsany, R W Atkinson III,et al.. Understanding the interplay between cathode catalyst layer porosity and thickness on transport limitations en route to high-performance PEMFCs. International Journal of Hydrogen Energy, 2019, 44(31): 16944–16955
https://doi.org/10.1016/j.ijhydene.2019.04.194
28 E Carcadea, M Varlam, A Marinoiu,et al.. Influence of catalyst structure on PEM fuel cell performance— a numerical investigation. International Journal of Hydrogen Energy, 2019, 44(25): 12829–12841
https://doi.org/10.1016/j.ijhydene.2018.12.155
29 G R Molaeimanesh, M A Bamdezh, M Nazemian. Impact of catalyst layer morphology on the performance of PEM fuel cell cathode via lattice Boltzmann simulation. International Journal of Hydrogen Energy, 2018, 43(45): 20959–20975
https://doi.org/10.1016/j.ijhydene.2018.09.076
30 A Nandy, F M Jiang, S Ge, et al.. Effect of cathode pore volume on PEM fuel cell cold start. Journal of the Electrochemical Society, 2010, 157(5): B726–B736
https://doi.org/10.1149/1.3355867
31 Y Luo, B Jia, K Jiao, et al.. Catalytic hydrogen-oxygen reaction in anode and cathode for cold start of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2015, 40(32): 10293–10307
https://doi.org/10.1016/j.ijhydene.2015.06.094
32 Y Hiramitsu, N Mitsuzawa, K Okada, et al.. Effects of ionomer content and oxygen permeation of the catalyst layer on proton exchange membrane fuel cell cold start-up. Journal of Power Sources, 2010, 195(4): 1038–1045
https://doi.org/10.1016/j.jpowsour.2009.08.016
33 X Xie, G Zhang, J Zhou, et al.. Experimental and theoretical analysis of ionomer/carbon ratio effect on PEM fuel cell cold start operation. International Journal of Hydrogen Energy, 2017, 42(17): 12521–12530
https://doi.org/10.1016/j.ijhydene.2017.02.183
34 J Ko, H Ju. Effects of cathode catalyst layer design parameters on cold start behavior of polymer electrolyte fuel cells (PEFCs). International Journal of Hydrogen Energy, 2013, 38(1): 682–691
https://doi.org/10.1016/j.ijhydene.2012.05.154
35 P He, L Chen, Y T Mu, et al.. Lattice Boltzmann method simulation of ice melting process in the gas diffusion layer of fuel cell. International Journal of Heat and Mass Transfer, 2020, 149: 119121
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119121
36 W Wu, F M Jiang. Microstructure reconstruction and characterization of PEMFC electrodes. International Journal of Hydrogen Energy, 2014, 39(28): 15894–15906
https://doi.org/10.1016/j.ijhydene.2014.03.074
37 F M Jiang, W Fang, C Y Wang. Non-isothermal cold start of polymer electrolyte fuel cells. Electrochimica Acta, 2007, 53(2): 610–621
https://doi.org/10.1016/j.electacta.2007.07.032
38 N P Siegel, M W Ellis, D J Nelson, et al.. Single domain PEMFC model based on agglomerate catalyst geometry. Journal of Power Sources, 2003, 115(1): 81–89
https://doi.org/10.1016/S0378-7753(02)00622-5
39 J Zhang, P Cao, L Xu, et al.. Modeling nanostructured catalyst layer in PEMFC and catalyst utilization. Frontiers of Chemical Science and Engineering in China, 2011, 5(3): 297–302
https://doi.org/10.1007/s11705-011-1201-1
40 R Wu, Q Liao, X Zhu, et al.. Pore network modeling of cathode catalyst layer of proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2012, 37(15): 11255–11267
https://doi.org/10.1016/j.ijhydene.2012.04.036
41 M A Khan, B Sundén, J Yuan. Analysis of multi-phase transport phenomena with catalyst reactions in polymer electrolyte membrane fuel cells—a review. Journal of Power Sources, 2011, 196(19): 7899–7916
https://doi.org/10.1016/j.jpowsour.2011.04.040
42 P T Nguyen, T Berning, N Djilali. Computational model of a PEM fuel cell with serpentine gas flow channels. Journal of Power Sources, 2004, 130(1–2): 149–157
https://doi.org/10.1016/j.jpowsour.2003.12.027
43 B Tjaden, D J L Brett, P R Shearing. Tortuosity in electrochemical devices: a review of calculation approaches. International Materials Reviews, 2018, 63(2): 47–67
https://doi.org/10.1080/09506608.2016.1249995
44 L Wei, Z H Liao, Z Suo, et al.. Numerical study of cold start performance of proton exchange membrane fuel cell with coolant circulation. International Journal of Hydrogen Energy, 2019, 44(39): 22160–22172
https://doi.org/10.1016/j.ijhydene.2019.06.147
45 L Wei, A M Dafalla, F M Jiang. Effects of reactants/coolant non-uniform inflow on the cold start performance of PEMFC stack. International Journal of Hydrogen Energy, 2020, 45(24): 13469–13482
https://doi.org/10.1016/j.ijhydene.2020.03.031
46 P Chippar, H Ju. Evaluating cold-start behaviors of end and intermediate cells in a polymer electrolyte fuel cell (PEFC) stack. Solid State Ionics, 2012, 225: 85–91
https://doi.org/10.1016/j.ssi.2012.02.038
47 H Meng. Numerical analyses of non-isothermal self-start behaviors of PEM fuel cells from subfreezing startup temperatures. International Journal of Hydrogen Energy, 2008, 33(20): 5738–5747
https://doi.org/10.1016/j.ijhydene.2008.07.042
48 R Bradean, H Haas, A Desousa, et al.. Models for predicting MEA water content during fuel cell operation and after shutdown. In: 2005 AIChE Annual Meeting and Fall Showcase. Cincinnati, OH, US, 2005, 10983–10990
49 K Tajiri, Y Tabuchi, C Y Wang. Isothermal cold start of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 2007, 154(2): B147–B152
https://doi.org/10.1149/1.2402124
50 A M Dafalla, L Wei, Z H Liao, et al.. Effects of clamping pressure on cold start behavior of polymer electrolyte fuel cells. Fuel Cells (Weinheim), 2019, 19(3): 221–230
https://doi.org/10.1002/fuce.201900039
51 N Macauley, R W Lujan, D Spernjak, et al.. Durability of polymer electrolyte membrane fuel cells operated at subfreezing temperatures. Journal of the Electrochemical Society, 2016, 163(13): F1317–F1329
https://doi.org/10.1149/2.0191613jes
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed