Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2021, Vol. 15 Issue (3): 596-599   https://doi.org/10.1007/s11708-021-0745-0
  本期目录
Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting
Zhiliang WANG(), Yuang GU, Lianzhou WANG()
Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
 全文: PDF(217 KB)   HTML
Abstract

Photoelectrochemical (PEC) water splitting is regarded as a promising way for solar hydrogen production, while the fast development of photovoltaic-electrolysis (PV-EC) has pushed PEC research into an embarrassed situation. In this paper, a comparison of PEC and PV-EC in terms of efficiency, cost, and stability is conducted and briefly discussed. It is suggested that the PEC should target on high solar-to-hydrogen efficiency based on cheap semiconductors in order to maintain its role in the technological race of sustainable hydrogen production.

Key wordshydrogen production    photovoltaic    electrocatalysis    photoelectrocatalysis    water splitting
收稿日期: 2021-01-26      出版日期: 2021-10-09
Corresponding Author(s): Zhiliang WANG,Lianzhou WANG   
 引用本文:   
. [J]. Frontiers in Energy, 2021, 15(3): 596-599.
Zhiliang WANG, Yuang GU, Lianzhou WANG. Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Front. Energy, 2021, 15(3): 596-599.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-021-0745-0
https://academic.hep.com.cn/fie/CN/Y2021/V15/I3/596
Fig.1  
PEC PV-EC
Highest reported STH efficiency 3% 30%
Predicted H2 price at 10% STH >US $8.43/kg H2 About US $6.22/kg H2
Stability About 1000 light hoursa >10000 h (based on EC)b
Highest current density About 25 mA/cm2 >500 mA/cm2 (based on EC)
EPT >5 a About 1 a
TRLc 3–4 8–9
Tab.1  
1 W H Brattain, C G B Garrett. Experiments on the interface between germanium and an electrolyte. Bell System Technical Journal, 1955, 34(1): 129–176
https://doi.org/10.1002/j.1538-7305.1955.tb03766.x
2 H Jr Letaw, J Bardeen. Electrolytic analog transistor. Journal of Applied Physics, 1954, 25(5): 600–606
https://doi.org/10.1063/1.1721697
3 L M Peter. Semiconductor electrochemistry. In: Giménez S, Bisquert J, eds. Photoelectrochemical Solar Fuel Production. Cham: Springer International Publishing, 2016: 3–40
4 F Williams, A J Nozik. Solid-state perspectives of the photoelectrochemistry of semiconductor–electrolyte junctions. Nature, 1984, 312(5989): 21–27
https://doi.org/10.1038/312021a0
5 A B Ellis, S W Kaiser, J M Bolts, et al.. Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. Journal of the American Chemical Society, 1977, 99(9): 2839–2848
https://doi.org/10.1021/ja00451a001
6 N R de Tacconi, N Myung, K Rajeshwar. Overlayer formation in the n-CdSe/[Fe(CN)6]4−/3− photoelectrochemical system as probed by laser Raman spectroscopy and electrochemical quartz crystal microgravimetry. Journal of Physical Chemistry, 1995, 99(16): 6103–6109
https://doi.org/10.1021/j100016a054
7 R Memming. Solar energy conversion by photoelectrochemical processes. Electrochimica Acta, 1980, 25(1): 77–88
https://doi.org/10.1016/0013-4686(80)80054-5
8 A J Nozik. Photoelectrochemistry: applications to solar energy conversion. Annual Review of Physical Chemistry, 1978, 29(1): 189–222
https://doi.org/10.1146/annurev.pc.29.100178.001201
9 H Gerischer, C W Tobias. Advances in Electrochemistry and Electrochemical Engineering. New York: John Wiley and Sons, 1978
10 A J Bard. Photoelectrochemistry. Science, 1980, 207(4427): 139–144
https://doi.org/10.1126/science.207.4427.139
11 S R Morrison. Applications of semiconductor electrodes. In: Electrochemistry at Semiconductor and Oxidized Metal Electrodes. Boston, MA: Springer US, 1980: 335–357
12 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0
13 NRER. National Best research—cell efficiency chart. 2020–04–06, available at website of nrel.gov
14 M F Lagadec, A Grimaud. Water electrolysers with closed and open electrochemical systems. Nature Materials, 2020, 19(11): 1140–1150
https://doi.org/10.1038/s41563-020-0788-3
15 K Ayers, N Danilovic, R Ouimet, et al.. Perspectives on low-temperature electrolysis and potential for renewable hydrogen at scale. Annual Review of Chemical and Biomolecular Engineering, 2019, 10(1): 219–239
https://doi.org/10.1146/annurev-chembioeng-060718-030241
16 J Luo, J H Im, M T Mayer, et al.. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science, 2014, 345(6204): 1593–1596
https://doi.org/10.1126/science.1258307
17 O Khaselev, J A Turner. A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science, 1998, 280(5362): 425–427
https://doi.org/10.1126/science.280.5362.425
18 J Jia, L C Seitz, J D Benck, et al.. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nature Communications, 2016, 7(1): 13237
https://doi.org/10.1038/ncomms13237
19 L Pan, J H Kim, M T Mayer, et al.. Boosting the performance of Cu2O photocathodes for unassisted solar water splitting devices. Nature Catalysis, 2018, 1(6): 412–420
https://doi.org/10.1038/s41929-018-0077-6
20 P Zhai, S Haussener, J Ager, et al.. Net primary energy balance of a solar-driven photoelectrochemical water-splitting device. Energy & Environmental Science, 2013, 6(8): 2380
https://doi.org/10.1039/c3ee40880a
21 K Sivula, R van de Krol. Semiconducting materials for photoelectrochemical energy conversion. Nature Reviews. Materials, 2016, 1(2): 15010
https://doi.org/10.1038/natrevmats.2015.10
22 S Zhang, Y He. Analysis on the development and policy of solar PV power in China. Renewable & Sustainable Energy Reviews, 2013, 21: 393–401
https://doi.org/10.1016/j.rser.2013.01.002
23 Y Alajlani, A Alaswad, F Placido, et al.. Inorganic thin film materials for solar cell applications. In: Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier B. V., 2018
24 D Feldman, G Barbose, R Margolis, et al.. Photovoltaic (PV) pricing trends: historical, recent, and near-term projections. Office of Scientific and Technical Information (OSTI), 2012
25 R J Detz, J N H Reek, B C C van der Zwaan. The future of solar fuels: when could they become competitive? Energy & Environmental Science, 2018, 11(7): 1653–1669
https://doi.org/10.1039/C8EE00111A
26 A Grimm, W A de Jong, G J Kramer. Renewable hydrogen production: a techno-economic comparison of photoelectrochemical cells and photovoltaic-electrolysis. International Journal of Hydrogen Energy, 2020, 45(43): 22545–22555
https://doi.org/10.1016/j.ijhydene.2020.06.092
27 Z Wang, L Wang. Photoelectrode for water splitting: materials, fabrication and characterization. Science China Materials, 2018, 61(6): 806–821
https://doi.org/10.1007/s40843-018-9240-y
28 E Kabir, P Kumar, S Kumar, et al.. Solar energy: potential and future prospects. Renewable & Sustainable Energy Reviews, 2018, 82: 894–900
https://doi.org/10.1016/j.rser.2017.09.094
29 Y Kuang, Q Jia, G Ma, et al.. Ultrastable low-bias water splitting photoanodes via photocorrosion inhibition and in situ catalyst regeneration. Nature Energy, 2017, 2(1): 16191
https://doi.org/10.1038/nenergy.2016.191
30 K P Bhandari, J M Collier, R J Ellingson, et al.. Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: a systematic review and meta-analysis. Renewable & Sustainable Energy Reviews, 2015, 47: 133–141
https://doi.org/10.1016/j.rser.2015.02.057
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed