Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2021, Vol. 15 Issue (3): 687-699   https://doi.org/10.1007/s11708-021-0773-9
  研究论文 本期目录
管式太阳能光催化反应器的流动和辐射理论研究
魏庆宇1, 王尧2, 代斌2, 杨艳3, 刘海君2, 袁怀杰2, 敬登伟2, 赵亮2()
1. 西安交通大学动力工程多相流国家重点实验室,国际可再生能源研究中心 中国西安 710049
2. 北京航天动力研究所 中国北京 100076
3. 上海理工大学能源与动力工程学院 中国上海 200093
Theoretical study on flow and radiation in tubular solar photocatalytic reactor
Qingyu WEI1, Yao WANG2, Bin DAI2, Yan YANG3, Haijun LIU2, Huaijie YUAN2, Dengwei JING2, Liang ZHAO2()
1. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Powering Engineering, Xi’an Jiaotong University, Xi’an 710049, China; Beijing Aerospace Propulsion Institute, Beijing 100076, China
2. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Powering Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3. International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Powering Engineering, Xi’an Jiaotong University, Xi’an 710049, China; School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
 全文: PDF(3514 KB)   HTML
摘要:

本文首先在混合物流动模型的基础上建立了优化的六通量辐射模型,同时分析了催化剂浓度和循环速度等参数对反应器出口光催化剂分布和辐射分布的影响。将优化后的六通量模型应用于管式太阳能光催化反应器进行性能评价,模拟结果表明,当催化剂浓度越高,液相入口流速越慢时,管式光催化反应器具有更好的辐射性能。(3倍催化剂浓度,1/3循环速度工况下,能量数值相对分别增加了1900%和284%)。

Abstract

In this paper, based on the mixture flow model, an optimized six-flux model is first established and applied to the tubular solar photocatalytic reactor. Parameters influencing photocatalyst distribution and radiation distribution at the reactor outlet, viz. catalyst concentration and circulation speed, are also analyzed. It is found that, at the outlet of the reactor, the optimized six-flux model has better performances (the energy increase by 1900% and 284%, respectively) with a higher catalyst concentration (triple) and a lower speed (one third).

Key wordsphotocatalytic hydrogen photoreactor    nume- rical simulation    solar energy    flow model    radiation model
收稿日期: 2021-01-10      出版日期: 2021-10-09
通讯作者: 赵亮     E-mail: lzhao@mail.xjtu.edu.cn
Corresponding Author(s): Liang ZHAO   
 引用本文:   
魏庆宇, 王尧, 代斌, 杨艳, 刘海君, 袁怀杰, 敬登伟, 赵亮. 管式太阳能光催化反应器的流动和辐射理论研究[J]. Frontiers in Energy, 2021, 15(3): 687-699.
Qingyu WEI, Yao WANG, Bin DAI, Yan YANG, Haijun LIU, Huaijie YUAN, Dengwei JING, Liang ZHAO. Theoretical study on flow and radiation in tubular solar photocatalytic reactor. Front. Energy, 2021, 15(3): 687-699.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-021-0773-9
https://academic.hep.com.cn/fie/CN/Y2021/V15/I3/687
Fig.1  
Catalyst concentration/(g·L–1) Extinction coefficient/(m2·kg–1)
0.25 312.58
0.5 317.31
0.75 327.41
Tab.1  
Fig.2  
Measurement model Wavelength scanning, time scanning, absorbance measurement
Wavelength range 175–3300 nm (the host), 200–2400 nm (integrating sphere)
Wavelength accuracy ≤±0.08 nm (UV/visible region),≤±0.4 nm (near infrared)
Wavelength repeatability ≤±0.005 nm (UV/visible region),≤±0.02 nm (near infrared)
Photometric accuracy ±0.00025 A
Photometer repeatability ≤0.00014 A
Baseline stability ≤0.0001 Abs/h
The light source Deuterium lamp, life 2000 h
Tungsten lamp, life 3000 h, automatic switch
Tab.2  
Fig.3  
Catalyst concentration/(g·L–1) Absorption coefficients/(m2·kg–1)
0.25 304.84
0.5 192.31
0.75 222.36
Tab.3  
Catalyst concentration/(g·L–1) Scattering coefficients/(m2·kg–1)
0.25 7.75
0.5 125.00
0.75 105.05
Tab.4  
Fig.4  
Fig.5  
Fig.6  
Parameter Setting value
Tube radius/m 0.02
Tube length/m 2.5
Tube inclination/(° ) 45
Fluid density/(kg·m–3) 998.2
Catalyst particle density/(kg·m–3) 4800
Catalyst particle radius/μm 10
Tab.5  
Parameter Setting value
Tube radius/m 0.03
Tube length/m 1.5
Tube inclination Horizontal
Fluid density/(kg·m–3) 1000
Catalyst particle density/(kg·m–3) 4800
Catalyst particle radius/μm 10
Tab.6  
Fig.7  
Parameter Value
Catalyst concentration/(g·L–1) 0.5
Received tube diameter/mm 33.0
Reflectivity of condenser 0.85
Concentrator receiving half angle/(° ) 90.0
Top-bottom clearance of concentrator/mm 0.0
Incident radiation intensity/(W·m–2) 30.0
Catalyst solution absorption coefficient/(m2·kg–1) 174.75
Catalyst solution scattering coefficient/(m2·kg–1) 1295.75
Forward scattering probability 0.11
Backward scattering probability 0.74
Side scattering probability 0.045
Tab.7  
Fig.8  
Flow velocity/(m·s–1) Concentration 1/(g·L–1) Concentration 2/(g·L–1) Concentration 3/(g·L–1)
0.28 0.25 0.5 0.75
Tab.8  
Fig.9  
Fig.10  
Concentration/(g·L–1) Flow velocity 1/(m·s–1) Flow velocity 2/(m·s–1) Flow velocity 3/(m·s–1)
0.5 0 0.14 0.28
Tab.9  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
1 X Chen, S Shen, L Guo, et al.. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
https://doi.org/10.1021/cr1001645
2 M Grätzel. Photoelectrochemical cells. Nature, 2001, 414(6861): 338–344
https://doi.org/10.1038/35104607
3 N S Lewis. Light work with water. Nature, 2001, 414(6864): 589–590
https://doi.org/10.1038/414589a
4 N S Lewis. Toward cost-effective solar energy use. Science, 2007, 315(5813): 798–801
https://doi.org/10.1126/science.1137014
5 N S Lewis, G Crabtree. Basic research needs for solar energy utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization. Washington DC, Office of Basic Energy Science, US Department of Energy, 2005
6 M G Walter, E L Warren, J R McKone, et al.. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473
https://doi.org/10.1021/cr1002326
7 A Züttel, A Borgschulte, L Schlapbach. Hydrogen as a Future Energy Carrier. Wiley-VCH Verlag GmbH & Co. KGaA, 2008
8 E Chornet, S Czernik. Harnessing hydrogen. Nature, 2002, 418(6901): 928–929
https://doi.org/10.1038/418928a
9 L Schlapbach. Hydrogen-fueled vehicles. Nature, 2009, 460(7257): 809–811
https://doi.org/10.1038/460809a
10 Z Xia. Solar-powered hydrogen production clean energy supply system. Solar Energy, 1994, (3): 31 (in Chinese)
11 J Kumar, A Bansal. Photocatalytic degradation in annular reactor: modelization and optimization using computational fluid dynamics (CFD) and response surface methodology (RSM). Journal of Environmental Chemical Engineering, 2013, 1(3): 398–405
https://doi.org/10.1016/j.jece.2013.06.002
12 Y Ren, D Jing. Study on particle and photonic flux distributions in a magnetically stirred photocatalytic reactor. Journal of Photonics for Energy, 2015, 5(1): 052097
https://doi.org/10.1117/1.JPE.5.052097
13 Y Ren, L Zhao, D Jing, et al.. Investigation and modeling of CPC based tubular photocatalytic reactor for scaled-up hydrogen production. International Journal of Hydrogen Energy, 2016, 41(36): 16019–16031
https://doi.org/10.1016/j.ijhydene.2016.04.225
14 C Casado, J Marugán, R Timmers, et al.. Comprehensive multiphysics modeling of photocatalytic processes by computational fluid dynamics based on intrinsic kinetic parameters determined in a differential photoreactor. Chemical Engineering Journal, 2017, 310: 368–380
https://doi.org/10.1016/j.cej.2016.07.081
15 R Acosta-Herazo, J Monterroza-Romero, M Á Mueses, et al.. Coupling the six flux absorption-scattering model to the henyey-greenstein scattering phase function: evaluation and optimization of radiation absorption in solar heterogeneous photoreactors. Chemical Engineering Journal, 2016, 302: 86–96
https://doi.org/10.1016/j.cej.2016.04.127
16 J Moreno-SanSegundo, C Casado, J Marugán. Enhanced numerical simulation of photocatalytic reactors with an improved solver for the radiative transfer equation. Chemical Engineering Journal, 2020, 388: 124183
https://doi.org/10.1016/j.cej.2020.124183
17 R Peralta Muniz Moreira, G Li Puma. Multiphysics computational fluid-dynamics (CFD) modeling of annular photocatalytic reactors by the discrete ordinates method (DOM) and the six-flux model (SFM) and evaluation of the contaminant intrinsic kinetics constants. Catalysis Today, 2021, 361: 77–84
https://doi.org/10.1016/j.cattod.2020.01.012
18 M A Ramírez-Cabrera, P J Valadés-Pelayo, C A Arancibia-Bulnes, et al.. Validity of the six-flux model for photoreactors. Chemical Engineering Journal, 2017, 330: 272–280
https://doi.org/10.1016/j.cej.2017.07.120
19 A E Cassano, O M Alfano. Reaction engineering of suspended solid heterogeneous photocatalytic reactors. Catalysis Today, 2000, 58(2–3): 167–197
https://doi.org/10.1016/S0920-5861(00)00251-0
20 G B Roupp, J A Nico, S Annangi, et al.. Two-flux radiation-field model for an annular packed-bed photocatalytic oxidation reactor. AIChE Journal, 1997, 43(3): 792–801
https://doi.org/10.1002/aic.690430324
21 F Cao, H Li, H Chao, et al.. Optimization of the concentration field in a suspended photocatalytic reactor. Energy, 2014, 74(5): 140–146
https://doi.org/10.1016/j.energy.2014.04.068
22 R L Romero, O M Alfano, A E Cassano. Cylindrical photocatalytic reactors. Radiation absorption and scattering effects produced by suspended fine particles in an annular space. Industrial & Engineering Chemistry Research, 1997, 36(8): 3094–3109
https://doi.org/10.1021/ie960664a
23 D Jing, L Jing, H Liu, et al.. Photocatalytic hydrogen production from refinery gas over a fluidized-bed reactor II: parametric study. Industrial & Engineering Chemistry Research, 2013, 52(5): 1992–1999
https://doi.org/10.1021/ie302315g
24 A Brucato, A E Cassano, F Grisafi, et al.. Estimating radiant fields in flat heterogeneous photoreactors by the six-flux model. AIChE Journal, 2006, 52(11): 3882–3890
https://doi.org/10.1002/aic.10984
25 R E Marinangeli, D F Ollis. Photoassisted heterogeneous catalysis with optical fibers: I. Isolated single fiber. AIChE Journal, 1977, 23(4): 415–426
https://doi.org/10.1002/aic.690230403
26 M I Cabrera, O M Alfano, A E Cassano. Absorption and scattering coefficients of titanium dioxide particulate suspensions in water. Journal of Physical Chemistry, 1996, 100(51): 20043–20050
https://doi.org/10.1021/jp962095q
27 Q Wei, Y Yang, H Liu, et al.. Experimental study on direct solar photocatalytic water splitting for hydrogen production using surface uniform concentrators. International Journal of Hydrogen Energy, 2018, 43(30): 13745–13753
https://doi.org/10.1016/j.ijhydene.2018.01.135
28 J Colina-Márquez, F Machuca-Martínez, G L Puma. Radiation absorption and optimization of solar photocatalytic reactors for environmental applications. Environmental Science & Technology, 2010, 44(13): 5112–5120
https://doi.org/10.1021/es100130h
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed