Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2021, Vol. 15 Issue (3): 631-655   https://doi.org/10.1007/s11708-021-0776-6
  本期目录
Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues
Taya (Ko) SAOTHAYANUN1, Thipwipa (Tip) SIRINAKORN2, Makoto OGAWA1()
1. School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
2. School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
 全文: PDF(6580 KB)   HTML
Abstract

Uses of layered alkali titanates (A2TinO2n+1; Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) for energy and environmental issues are summarized. Layered alkali titanates of various structural types and compositions are regarded as a class of nanostructured materials based on titanium oxide frameworks. If compared with commonly known titanium dioxides (anatase and rutile), materials design based on layered alkali titanates is quite versatile due to the unique structure (nanosheet) and morphological characters (anisotropic particle shape). Recent development of various synthetic methods (solid-state reaction, flux method, and hydrothermal reaction) for controlling the particle shape and size of layered alkali titanates are discussed. The ion exchange ability of layered alkali titanate is used for the collection of metal ions from water as well as a way of their functionalization. These possible materials design made layered alkali titanates promising for energy (including catalysis, photocatalysts, and battery) and environmental (metal ion concentration from aqueous environments) applications.

Key wordslayered alkali titanates    photocatalysis    hydrogen evdution    metal ions collection
收稿日期: 2021-02-09      出版日期: 2021-10-09
Corresponding Author(s): Makoto OGAWA   
 引用本文:   
. [J]. Frontiers in Energy, 2021, 15(3): 631-655.
Taya (Ko) SAOTHAYANUN, Thipwipa (Tip) SIRINAKORN, Makoto OGAWA. Layered alkali titanates (A2TinO2n+1): possible uses for energy/environment issues. Front. Energy, 2021, 15(3): 631-655.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-021-0776-6
https://academic.hep.com.cn/fie/CN/Y2021/V15/I3/631
Fig.1  
Fig.2  
Fig.3  
Reaction condition Average particle size of the starting anatase TiO2
20 nm 200 nm >1 μm
750°C, 2.5 h TiO2 + Na2Ti6O13 TiO2 + Na2Ti6O13 TiO2
750°C, 5 h Na2Ti6O13 Na2Ti6O13 TiO2 Na2Ti6O13
750°C, 26 h Na2Ti6O13 + Na2Ti3O7 (major) Na2Ti6O13 + Na2Ti3O7 (major) Na2Ti6O13 + Na2Ti3O7
800°C, 8 h Na2Ti3O7 Na2Ti6O13 (minor) + Na2Ti3O7 Na2Ti6O13 + Na2Ti3O7 (minor)
800°C, 16 h Na2Ti3O7 Na2Ti6O13 (minor) + Na2Ti3O7
800°C, 40 h Na2Ti3O7
Tab.1  
Fig.4  
Fig.5  
K2CO3:V2O3 Weight ratio
flux/K2Ti6O13
Temperature/°C Particle shape Maximum length/mm
40:60 1.5 1200 to 900 Rutile, needle-like 4
48:52 2 1250 to 700 Needle-like crystals 4
1.5 1250 to 700 Needle-like crystals 5
1 1250 to 700 Needle-like crystals 4
53:47 2 1200 to 900 Needle-like crystals 5
1.5 1200 to 900 Needle-like crystals 5
1 1200 to 900 Needle-like crystals 4
Tab.2  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Solid-state reaction Flux method Hydrothermal method
Operation ? Relatively high temperature processing
✓ Atmospheric pressure
? Relatively high temperature processing
✓ Atmospheric pressure
✓ Relatively low temperature processing
? Pressurized
? Requires concentrated and hot alkali solutions
Shape Rectangular shaped (fibrous/whisker) Elongated rectangular shaped (needle) Nanotubes, nanofibers, nanorods
Size Length: submicrometer to micrometer
Width: submicrometer
Length: micrometer to submillimeter
Width: submicrometer
Length: submicrometer to submillimeter
Diameter: nanometer
Tab.3  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Photocatalytic H2 evolution reaction
Layered alkali titanates or its derivative Starting materials Synthetic method Photocatalytic conditions Light source Co-catalysts Efficiency/(µmol·(h·g)?1) Ref.
Na2Ti3O7 Solid-state reaction Methanol-water (20%, volume fraction) 500 W Xe 5.8 [93]
Pt 38
H2Ti3O7 Na2Ti3O7 Proton exchange reaction Methanol-water (20%, volume fraction) 500 W Xe 3.8
Pt 11
K2Ti2O5 Solid-state reaction Methanol-water (20%, volume fraction) 500 W Xe 41.6
Pt 69.4
H2Ti2O5 K2Ti2O5 Proton exchange reaction Methanol-water (20%, volume fraction) 500 W Xe 66.8
Pt 83.8
K2Ti4O9 Solid-state reaction Methanol-water (20%, volume fraction) 500 W Xe 7
Pt 9.6
H2Ti4O9 K2Ti4O9 Proton exchange reaction Methanol-water (20%, volume fraction) 500 W Xe 6.4
Pt 27.6
K2Ti6O13 Solid-state reaction Methanol-water (20%, volume fraction) 500 W Xe 8.4
Pt 121
H2Ti6O13 K2Ti6O13 Proton exchange reaction Methanol-water (20%, volume fraction) 500 W Xe 30.2
Pt 166
Cs2Ti2O5 - Solid-state reaction Methanol-water (3%, volume fraction) 400 W high-pressure Hg 500 [94]
H2Ti2O5 Cs2Ti2O5 Proton exchange reaction Methanol-water (3%, volume fraction) 400 W high-pressure Hg 852
Pt 2510
Cs2Ti5O11 Solid-state reaction Methanol-water (3%, volume fraction) 400 W high-pressure Hg 90
Cs2Ti6O13 Solid-state reaction Methanol-water (3%, volume fraction) 400 W high-pressure Hg 38
K2Ti4O9 Solid-state reaction Methanol-water (20%, volume fraction) 300 W Xe 40 [13]
Pt 2210
H2Ti4O9 Proton exchange reaction Methanol-water (20%, volume fraction) 300 W Xe 290
Pt 2520
TBA2-Ti4O9 H2Ti4O9 Exfoliation Methanol-water (20%, volume fraction) 300 W Xe 140
Pt 4050
Sn(II)-K2Ti4O9 K2Ti4O9 Ion exchange reaction Methanol-water (10%, volume fraction) 300 W Xe Pt 115 [96]
Sn(II)-K2Ti2O5 K2Ti2O5 Ion exchange reaction Methanol-water (10%, volume fraction) 300 W Xe Pt 25
Sn(II)-Cs2Ti6O13 Cs2Ti6O13 Ion exchange reaction Methanol-water (10%, volume fraction) 300 W Xe Pt 35
Sn(II)-K2Ti6O13 K2Ti6O13 Ion exchange reaction Methanol-water (19%, volume fraction) 300 W Xe Pt 250 [122]
Li2–x HxTi3O7 Alkaline hydrothermal and ion exchange reaction Methanol 30 W UV Pt 2910 [97]
Na2–x HxTi3O7 Alkaline hydrothermal and ion exchange reaction Methanol 30 W UV Pt 2700
K2–x HxTi3O7 Alkaline hydrothermal and ion exchange reaction Methanol 30 W UV Pt 3630
Cs2–x HxTi3O7 Alkaline hydrothermal and ion exchange reaction Methanol 30 W UV Pt 2280
K2Ti6O13 fibers Flux synthesis and heat treatment Methanol-water (2%, volume fraction) 250 W Hg 298 [100]
K2Ti6O13 fibers Flux synthesis Water vapor 300 W Xe Rh 18 [101]
[Ti3–xRhxO7]2? nanosheets Solid-state reaction and exfoliation Triethylamine-water (pH 11) 500 W Xe (>220 nm) 1040 [102]
500 W Xe (>340 nm) 302
[Ti3O7]2? nanosheets 500 W Xe (>220 nm) Rh 1970
H2YxTi(2–x)O5·H2O/anatase/rutile Microwave-assisted alkaline hydrothermal method in the presence of Y salt and proton exchange reaction Methanol-water Hg-Xe lamp 72 [103]
Ni 6660
Cu 11660
Co 5280
Anatase TiO2/K2Ti4O9 K2Ti4O9 Hydrothermal treatment in TBA, NH4F solution Methanol-water (5%, volume fraction) 150 W Xe (>450 nm) Ni 0.12 [123]
WO3/H2Ti3O7 H2Ti3O7 Microwave-assisted hydrothermal method 2-propanol-water (50%, volume fraction) UV LED (365 nm) Rh 4680 [113]
Vis LED (450 nm) Rh 1740
Cr2O3/titanate nanosheets H2Ti3O7 Alkaline hydrothermal treatment in the presence of Cr source and proton exchange reaction Triethanolamine-water (10%, volume fraction) 300 W Xe (>420 nm) Pt 473 [124]
H2Ti2O4(OH)2 Alkaline hydrothermal treatment Na2S/Na3SO3-water 300 W Xe 195 [125]
GQDs/H2Ti2O4(OH)2 H2Ti2O4(OH)2 nanotubes Solvothermal treatment of H2Ti2O4(OH)2 with citric acid in DMF 290
CdS/GQDs/H2Ti2O4(OH)2 GQDs/H2Ti2O4(OH)2 Ion exchange with Cd(II) followed by sulfurization 530
H2Ti3O7 nanobelts Na2Ti3O7 Alkaline hydrothermal treatment and proton exchange reaction Methanol-water (18%, volume fraction) Solar simulator (AM 1.5 G,>300 nm) Pt n/d [109]
Mesoporous TiO2-B nanobelts H2Ti3O7 Heat treatment in air Pt 9375
Anatase TiO2 nanobelts H2Ti3O7 Heat treatment in air Pt 4030
Octahedral Anatase Particles (OAPs) K2Ti8O17 Hydrothermal treatment of K2Ti8O17 Methanol-water (50%, volume fraction) 400 W High pressure Hg Pt 4320 [121]
Anatase TiO2 nanorods H2Ti3O7 nanotubes Heat treatment in air Ethanol-water (10%, volume fraction) 100 W UV LED (365 nm) Au 14400 [126]
Glycerol-water (10%, volume fraction) 29200
Anatase TiO2 nanorods H2Ti3O7 nanotubes Heat treatment Ethanol-water (10%, volume fraction) 100 W UV LED (365 nm) Pd 30000 [110]
Au 8700
Pd-Au 39000
N-doped defected-anatase TiO2 H2Ti2O5·H2O Heat treatment of DMF/H2Ti2O5·H2O in air 50%, volume fraction methanol-water Solar simulator 1035 [105]
Rutile TiO2 nanobundles H2Ti5O11·3H2O HNO3 treatment of layered titanic acid under reflux Triethanolamine-water 300 W Xe arc (0.38 W/cm2) Pt 8048 (3.1 times over Degussa P25) [127]
Ni(0)-Anatase TiO2/Titanate H2Ti4O9·H2O Precipitation of Ni(OH)2 onto H2Ti4O9·H2O and thermalreduction in innert atmosphere 2-propanol-water (1%, volume fraction) 100 W Hg 1040 [128]
NiTiO3/Anatase TiO2 nanotube H2TinO2n+1 nanotubes Adsorption of Ni(II) and heat treatment in air Methanol-water (10%, volume fraction) 300 W Xe 680 [129]
Cu(OH)2-Ni(OH)2/Anatase TiO2 nanorods H2Ti3O7 nanotubes Heat treatment of H2Ti3O7 and co-deposition of copper and nickel hydroxides Ethanol-water (20%, volume fraction) 100 W UV LED (365 nm) 26600 [130]
Anatase TiO2 microspheres H2Ti4O9 nanotube Hydrothermal treatment of H2Ti4O9 in HF/urea solution tri-ammonium phosphate-water 1000 W Hg 31250 (2.5 fold greater than H2Ti4O9 nanotube) [117]
Anatase/K2–x HxTinO2n+1, n = 6, 8 Alkaline hydrothermal and proton exchange reaction 0.3 mol/L NH3BH3/H2O+ 40°C 100 W UV LED (365 nm) 10000 [116]
rGO/Na2Ti3O7 Alkaline hydrothermal treatment in the presence of rGO Ammonia borane-water Xe lamp (220 mW/cm2) 131 mL/(gcat·min)(2.7 times higher than Na2Ti3O7) [119]
Fe-Co exchanged titanate nanotubes Na2Ti3O7 Ion exchange reaction with Fe and Co cations Triammonium phosphate-water Sun light (Egypt, latitude 29° N) 348200 µmol/(h·gsalt·gcat) [118]
Photocatalytic CO2 reduction
Layered alkali titanates or its derivative Starting materials Synthetic method Photocatalytic conditions Light source Co-catalysts Efficiency Ref.
Titanate-(Zr)UiO-66 H2Ti2O5.H2O Microwave-assisted solvothermal treatment in the presence of Zr and 2‐aminoteraphtalic acid CO2-H2-Water 150 W Xe arc (>325 nm) 0.45 (µmol CO/(h·g)) [131]
Anatase-(Zr)UiO-66 Heat treatment and microwave-assisted solvothermal treatment CO2-H2-Water 0.85 (µmol CO/(h·g))
CdS/(Cu(0)-NaxH2–xTi3O7) NaxH2–xTi3O7 Adsorption of Cu(II) and heat treatment in inert atmosphere (H2/N2),
Adsorption of Cd(II), hydrothermal treatment in Na2S aqueous solution for sulfurization, and heat treatment in inert atmosphere
CO2-water 450 W Xe (>420 nm) 27.5(µl CH4/ (h·g)), 17(µl C2H6/ (h·g)), 10(µl C3H8/ (h·g)) [120]
Octahedral Anatase Particles (OAPs) K2Ti8O17 Hydrothermal treatment of K2Ti8O17 Acetic acid-water (5%, volume fraction) 400 W High pressure Hg Pt 1130(µmol CO2/(h·g) [121]
Tab.4  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Fig.29  
Fig.30  
Fig.31  
1 L Wang, T Sasaki. Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chemical Reviews, 2014, 114(19): 9455–9486
https://doi.org/10.1021/cr400627u
2 M Ogawa, K Saito, M Sohmiya. A controlled spatial distribution of functional units in the two dimensional nanospace of layered silicates and titanates. Dalton Transactions (Cambridge, England), 2014, 43(27): 10340–10354
https://doi.org/10.1039/C4DT00147H
3 Z Hong, M Wei. Layered titanate nanostructures and their derivatives as negative electrode materials for lithium-ion batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2013, 1(14): 4403–4414
https://doi.org/10.1039/c2ta01312f
4 C Chen, G A Sewvandi, T Kusunose, et al. Synthesis of {010}-faceted anatase TiO2 nanoparticles from layered titanate for dye-sensitized solar cells. CrystEngComm, 2014, 16(37): 8885–8895
https://doi.org/10.1039/C4CE01250J
5 T Okada, Y Ide, M Ogawa. Organic-inorganic hybrids based on ultrathin oxide layers: designed nanostructures for molecular recognition. Chemistry, an Asian Journal, 2012, 7(9): 1980–1992
https://doi.org/10.1002/asia.201101015
6 A Kudo, Y Miseki. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews, 2009, 38(1): 253–278
https://doi.org/10.1039/B800489G
7 Y Ide, M Sadakane, T Sano, et al. Functionalization of layered titanates. Journal of Nanoscience and Nanotechnology, 2014, 14(3): 2135–2147
https://doi.org/10.1166/jnn.2014.8525
8 I Y Kim, Y K Jo, J M Lee, et al. Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. Journal of Physical Chemistry Letters, 2014, 5(23): 4149–4161
https://doi.org/10.1021/jz502038g
9 T Sasaki, M Watanabe, Y Komatsu, et al. Layered hydrous titanium dioxide: potassium ion exchange and structural characterization. Inorganic Chemistry, 1985, 24(14): 2265–2271
https://doi.org/10.1021/ic00208a028
10 M Dion, Y Piffard, M Tournoux. The tetratitanates M2Ti4O9 (M= Li, Na, K, Rb, Cs, Tl, Ag). Journal of Inorganic and Nuclear Chemistry, 1978, 40(5): 917–918
https://doi.org/10.1016/0022-1902(78)80175-4
11 H Izawa, S Kikkawa, M Koizumi. Formation and properties of n-alkylammonium complexes with layered tri- and tetra-titanates. Polyhedron, 1983, 2(8): 741–744
https://doi.org/10.1016/S0277-5387(00)87201-0
12 N Miyamoto, K Kuroda, M Ogawa. Exfoliation and film preparation of a layered titanate, Na2Ti3O7, and intercalation of pseudoisocyanine dye. Journal of Materials Chemistry, 2004, 14(2): 165–170
https://doi.org/10.1039/b308800f
13 M R Allen, A Thibert, E M Sabio, et al. Evolution of physical and photocatalytic properties in the layered titanates A2Ti4O9 (A= K, H) and in nanosheets derived by chemical exfoliation. Chemistry of Materials, 2010, 22(3): 1220–1228
https://doi.org/10.1021/cm902695r
14 M W Anderson, J Klinowski. Layered titanate pillared with alumina. Inorganic Chemistry, 1990, 29(17): 3260–3263
https://doi.org/10.1021/ic00342a047
15 R Ma, T Sasaki. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Accounts of Chemical Research, 2015, 48(1): 136–143
https://doi.org/10.1021/ar500311w
16 Z Xiong, X S Zhao. Preparation of layered titanate with interlayer cadmium sulfide particles for visible-light-assisted dye degradation. RSC Advances, 2014, 4(106): 61960–61967
https://doi.org/10.1039/C4RA09692D
17 S Sehati, M H Entezari. Sono-intercalation of CdS nanoparticles into the layers of titanate facilitates the sunlight degradation of Congo red. Journal of Colloid and Interface Science, 2016, 462: 130–139
https://doi.org/10.1016/j.jcis.2015.09.070
18 S Andersson, A D Wadsley. The crystal structure of Na2Ti3O7. Acta Crystallographica, 1961, 14(12): 1245–1249
https://doi.org/10.1107/S0365110X61003636
19 S Andersson, A D Wadsley, R Nilsson, et al. The crystal structure of K2Ti2O5. Acta Chemica Scandinavica, 1961, 15: 663–669
https://doi.org/10.3891/acta.chem.scand.15-0663
20 I E Grey, I C Madsen, J A Watts, et al. New cesium titanate layer structures. Journal of Solid State Chemistry, 1985, 58(3): 350–356
https://doi.org/10.1016/0022-4596(85)90217-8
21 S Andersson, A D Wadsley. The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallographica, 1962, 15(3): 194–201
https://doi.org/10.1107/S0365110X62000511
22 K L Berry, V D Aftandilian, W W Gilbert, et al. Potassium tetra- and hexatitanates. Journal of Inorganic and Nuclear Chemistry, 1960, 14(3–4): 231–239
https://doi.org/10.1016/0022-1902(60)80263-1
23 H Izawa, S Kikkawa, M Koizumi. Ion exchange and dehydration of layered [sodium and potassium] titanates, Na2Ti3O7 and K2Ti4O9. Journal of Physical Chemistry, 1982, 86(25): 5023–5026
https://doi.org/10.1021/j100222a036
24 J Kwiatkowska, I E Grey, I C Madsen, et al. An X-ray and neutron diffraction study of cesium titanates, Cs2Ti5O11 and Cs2Ti5O11.X2O, X = H, D. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1987, 43(3): 258–265
https://doi.org/10.1107/S010876818709791X
25 L A Bursill, D J Smith, J Kwiatkowska. Identifying characteristics of the fibrous cesium titanate Cs2Ti5O11. Journal of Solid State Chemistry, 1987, 69(2): 360–368
https://doi.org/10.1016/0022-4596(87)90094-6
26 Y Fujiki. Growth of mixed fibers of potassium-tetratitanate and-dititanate by slow-cooling calcination method. Journal of the Ceramic Association, Japan, 1982, 90(1046): 624–626
https://doi.org/10.2109/jcersj1950.90.1046_624
27 M Kajiwara. The formation of potassium titanate fibre with flux methods. Journal of Materials Science, 1987, 22(4): 1223–1227
https://doi.org/10.1007/BF01233112
28 J K Lee, K H Lee, H Kim. Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method. Journal of Materials Science, 1996, 31(20): 5493–5498
https://doi.org/10.1007/BF01159322
29 H Izawa, S Kikkawa, M Koizumi. Hydrothermal synthesis of sodium trititanate and preparation of fibrous H2Ti3O7. Journal of the Japan Society of Powder and Powder Metallurgy, 1986, 33(7): 353–355
https://doi.org/10.2497/jjspm.33.353
30 N Masaki, S Uchida, H Yamane, et al. Hydrothermal synthesis of potassium titanates in Ti-KOH-H2O system. Journal of Materials Science, 2000, 35(13): 3307–3311
https://doi.org/10.1023/A:1004835724752
31 M Kitano, E Wada, K Nakajima, et al. Protonated titanate nanotubes with lewis and brønsted acidity: relationship between nanotube structure and catalytic activity. Chemistry of Materials, 2013, 25(3): 385–393
https://doi.org/10.1021/cm303324b
32 R Ma, K Fukuda, T Sasaki, et al. Structural features of titanate nanotubes/nanobelts revealed by Raman, X-ray absorption fine structure and electron diffraction characterizations. Journal of Physical Chemistry B, 2005, 109(13): 6210–6214
https://doi.org/10.1021/jp044282r
33 Y Lan, X Gao, H Zhu, et al. Titanate nanotubes and nanorods prepared from rutile powder. Advanced Functional Materials, 2005, 15(8): 1310–1318
https://doi.org/10.1002/adfm.200400353
34 S Thennarasu, K Rajasekar, K Balkis Ameen. Hydrothermal temperature as a morphological control factor: preparation, characterization and photocatalytic activity of titanate nanotubes and nanoribbons. Journal of Molecular Structure, 2013, 1049: 446–457
https://doi.org/10.1016/j.molstruc.2013.06.064
35 Y Sakurai, T Yoshida. Synthesis of K2Ti4O9 by the hydrolysis of KOH-Ti(iso-C3H7O)4 ethanol solution. Journal of the Ceramic Society of Japan, 1991, 99(1146): 105–107
https://doi.org/10.2109/jcersj.99.105
36 J Yang, D Li, X Wang, et al. Study on the synthesis and ion-exchange properties of layered titanate Na2Ti3O7 powders with different sizes. Journal of Materials Science, 2003, 38(13): 2907–2911
https://doi.org/10.1023/A:1024401006582
37 N Bao, X Feng, L Shen, et al. Calcination syntheses of a series of potassium titanates and their morphologic evolution. Crystal Growth & Design, 2002, 2(5): 437–442
https://doi.org/10.1021/cg025541+
38 N Bao, L Shen, X Feng, et al. High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania. Journal of the American Ceramic Society, 2004, 87(3): 326–330
https://doi.org/10.1111/j.1551-2916.2004.00326.x
39 O V Yakubovich, V V Kireev. Refinement of the crystal structure of Na2Ti3O7. Crystallography Reports, 2003, 48(1): 24–28
https://doi.org/10.1134/1.1541737
40 Y Fujiki, N Ohta. The flux growth reactions of potassium tetratitanate (K2Ti4O9) fibers. Journal of the Ceramic Association, Japan, 1980, 88(1015): 111–116
https://doi.org/10.2109/jcersj1950.88.1015_111
41 D V Bavykin, V N Parmon, A A Lapkin, et al. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. Journal of Materials Chemistry, 2004, 14(22): 3370–3377
https://doi.org/10.1039/b406378c
42 T Gao, H Fjellvåg, P Norby. Crystal structures of titanate nanotubes: a Raman scattering study. Inorganic Chemistry, 2009, 48(4): 1423–1432
https://doi.org/10.1021/ic801508k
43 D Yang, Z Zheng, Y Yuan, et al. Sorption induced structural deformation of sodium hexa-titanate nanofibers and their ability to selectively trap radioactive Ra(ii) ions from water. Physical Chemistry Chemical Physics, 2010, 12(6): 1271–1277
https://doi.org/10.1039/B911085B
44 M Feng, W You, Z Wu, et al. Mildly alkaline preparation and methylene blue adsorption capacity of hierarchical flower-like sodium titanate. ACS Applied Materials & Interfaces, 2013, 5(23): 12654–12662
https://doi.org/10.1021/am404011k
45 L Magalhães Nunes, A Gouveia de Souza, R Fernandes de Farias. Synthesis of new compounds involving layered titanates and niobates with copper(II). Journal of Alloys and Compounds, 2001, 319(1–2): 94–99
https://doi.org/10.1016/S0925-8388(00)01414-6
46 D Yang, Z Zheng, H Liu, et al. Layered titanate nanofibers as efficient adsorbents for removal of toxic radioactive and heavy metal ions from water. Journal of Physical Chemistry C, 2008, 112(42): 16275–16280
https://doi.org/10.1021/jp803826g
47 G Li, L Zhang, M Fang. Facile fabrication of sodium titanate nanostructures using metatitanic acid (TiO2⋅H2O) and its adsorption property. Journal of Nanomaterials, 2012: 875295
https://doi.org/10.1155/2012/875295
48 N Li, L Zhang, Y Chen, et al. Highly efficient, irreversible and selective ion exchange property of layered titanate nanostructures. Advanced Functional Materials, 2012, 22(4): 835–841
https://doi.org/10.1002/adfm.201102272
49 T Wang, W Liu, L Xiong, et al.Influence of pH, ionic strength and humic acid on competitive adsorption of Pb(II), Cd(II) and Cr(III) onto titanate nanotubes. Chemical Engineering Journal, 2013, 215–216: 366–374
https://doi.org/10.1016/j.cej.2012.11.029
50 W Liu, W Sun, Y Han, et al. Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under different NaOH concentrations: role of sodium content. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2014, 452: 138–147
https://doi.org/10.1016/j.colsurfa.2014.03.093
51 M Vithal, S Rama Krishna, G Ravi, et al. Synthesis of Cu2+ and Ag+ doped Na2Ti3O7 by a facile ion-exchange method as visible-light-driven photocatalysts. Ceramics International, 2013, 39(7): 8429–8439
https://doi.org/10.1016/j.ceramint.2013.04.025
52 X Gu, F Chen, B Zhao, et al. Photocatalytic reactivity of Ce-intercalated layered titanate prepared with a hybrid method based on ion-exchange and thermal treatment. Superlattices and Microstructures, 2011, 50(2): 107–118
https://doi.org/10.1016/j.spmi.2011.05.007
53 K Ikenaga, H Kurokawa, M A Ohshima, et al. New development of inorganic ion exchanger: ion-exchange reaction of layered sodium titanate (Na2Ti3O7) with mono, di, and trivalent ions. Journal of Ion Exchange, 2005, 16(1): 10–17
https://doi.org/10.5182/jaie.16.10
54 W Liu, X Zhao, T Wang, et al. Selective and irreversible adsorption of mercury(ii) from aqueous solution by a flower-like titanate nanomaterial. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2015, 3(34): 17676–17684
https://doi.org/10.1039/C5TA04521E
55 H Izawa, S Kikkawa, M Koizumi. Cation exchange selectivity of layered titanates, H2Ti3O7. Journal of Solid State Chemistry, 1985, 60(2): 264–267
https://doi.org/10.1016/0022-4596(85)90122-7
56 T Sasaki, Y Komatsu, Y Fujiki. Protonated pentatitanate: preparation, characterizations and cation intercalation. Chemistry of Materials, 1992, 4(4): 894–899
https://doi.org/10.1021/cm00022a027
57 Y Komatsu, Y Fujiki, T Sasaki. Ion-exchange equilibrium of alkali metal ions between crystalline hydrous titanium dioxide fibers and aqueous solutions. Bunseki Kagaku, 1982, 31(7): E225–E229
https://doi.org/10.2116/bunsekikagaku.31.7_E225
58 Y Komatsu, Y Fujiki, T Sasaki. Adsorption of alkaline earth metal ions on crystalline hydrous titanium dioxide fibers at 298 to 353K. Bunseki Kagaku, 1984, 33(5): E159–E162
https://doi.org/10.2116/bunsekikagaku.33.5_E159
59 Y Komatsu, Y Fujiki, T Sasaki. Distribution coefficients of alkaline earth metal ions and their possible applications on crystalline hydrous titanium dioxide fibers. Bunseki Kagaku, 1983, 32(2): E33–E39
https://doi.org/10.2116/bunsekikagaku.32.2_E33
60 P Szirmai, J Stevens, E Horváth, et al. Competitive ion-exchange of manganese and gadolinium in titanate nanotubes. Catalysis Today, 2017, 284: 146–152
https://doi.org/10.1016/j.cattod.2016.11.010
61 X Song, E Yang, Y Zheng. Synthesis of MxHyTi3O7 nanotubes by simple ion-exchanged process and their adsorption property. Chinese Science Bulletin, 2007, 52(18): 2491–2495
https://doi.org/10.1007/s11434-007-0337-3
62 L Torrente-Murciano, A A Lapkin, D V Bavykin, et al. Highly selective Pd/titanate nanotube catalysts for the double-bond migration reaction. Journal of Catalysis, 2007, 245(2): 272–278
https://doi.org/10.1016/j.jcat.2006.10.015
63 T H Chang. Synthesis and characterization of europium-exchanged titanate nanoporous phosphors. Journal of the Chinese Chemical Society (Taipei), 2016, 63(2): 233–238
https://doi.org/10.1002/jccs.201500210
64 J Huang, Y Cao, Z Liu, et al. Efficient removal of heavy metal ions from water system by titanate nanoflowers. Chemical Engineering Journal, 2012, 180: 75–80
https://doi.org/10.1016/j.cej.2011.11.005
65 H Izawa, S Kikkawa, M Koizumi. Europium3+ and terbium3+ intercalations into layered titanic acids H2Ti3O7 and H2Ti4O9.H2O using ion-exchange reaction. Nippon Kagaku Kaishi, 1987, 3(3): 397–399
https://doi.org/10.1246/nikkashi.1987.397
66 H Izawa, S Kikkawa, M Koizumi. Effect of intercalated alkylammonium on cation exchange properties of H2Ti3O7. Journal of Solid State Chemistry, 1987, 69(2): 336–342
https://doi.org/10.1016/0022-4596(87)90091-0
67 Y Komatsu, Y Fujiki, T Sasaki. Adsorption of cobalt(II) ions on crystalline hydrous titanium dioxide fibers at 298 to 423 K. Bulletin of the Chemical Society of Japan, 1986, 59(1): 49–52
https://doi.org/10.1246/bcsj.59.49
68 T Sasaki, Y Komatsu, Y Fujiki. Distribution coefficients of lanthanide elements and some separations on layered hydrous titanium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 1986, 107(2): 111–119
https://doi.org/10.1007/BF02163446
69 T Sasaki, Y Komatsu, Y Fujiki. Formation and characterization of layered lithium titanate hydrate. Materials Research Bulletin, 1987, 22(10): 1321–1328
https://doi.org/10.1016/0025-5408(87)90295-9
70 R D Shannon, C T Prewitt. Effective ionic radii in oxides and fluorides. Acta Crystallographica. Section B, Structural Crystallography and Crystal Chemistry, 1969, 25(5): 925–946
https://doi.org/10.1107/S0567740869003220
71 T K Saothayanun, T T Sirinakorn, M Ogawa. Ion exchange of layered alkali titanates (Na2Ti3O7, K2Ti4O9, and Cs2Ti5O11) with alkali halides by the solid-state reactions at room temperature. Inorganic Chemistry, 2020, 59(6): 4024–4029
https://doi.org/10.1021/acs.inorgchem.9b03695
72 Y I Kim, S Salim, M J Huq, et al. Visible-light photolysis of hydrogen iodide using sensitized layered semiconductor particles. Journal of the American Chemical Society, 1991, 113(25): 9561–9563
https://doi.org/10.1021/ja00025a021
73 H Miyata, Y Sugahara, K Kuroda, et al. Synthesis of a viologen–tetratitanate intercalation compound and its photochemical behaviour. Journal of the Chemical Society, Faraday Transactions 1. Physical Chemistry in Condensed Phases, 1988, 84(8): 2677–2682
https://doi.org/10.1039/f19888402677
74 R Kaito, N Miyamoto, K Kuroda, et al. Intercalation of cationic phthalocyanines into layered titanates and control of the microstructures. Journal of Materials Chemistry, 2002, 12(12): 3463–3468
https://doi.org/10.1039/b210237b
75 N Miyamoto, K Kuroda, M Ogawa. Visible light induced electron transfer and long-lived charge separated state in cyanine dye/layered titanate intercalation compounds. Journal of Physical Chemistry B, 2004, 108(14): 4268–4274
https://doi.org/10.1021/jp035617s
76 Y Ide, M Ogawa. Surface modification of a layered alkali titanate with organosilanes. Chemical Communications, 2003, 11(11): 1262
https://doi.org/10.1039/b301222k
77 C (Baitong) Tirayaphanitchkul, K (Jaa) Imwiset, M Ogawa. Nanoarchitectonics through organic modification of oxide based layered materials: concepts, methods and functions. Bulletin of the Chemical Society of Japan, 2021, 94(2): 678–693
https://doi.org/10.1246/bcsj.20200310
78 M Ogawa, Y Takizawa. Intercalation of tris(2, 2'-bipyridine)ruthenium(II) into a layered silicate, magadiite, with the aid of a crown ether. Journal of Physical Chemistry B, 1999, 103(24): 5005–5009
https://doi.org/10.1021/jp984198+
79 M Ogawa, Y Takizawa. One pot synthesis of layered tetratitanate-organic intercalation compounds with the aid of macrocyclic compounds. Molecular Crystals and Liquid Crystals Science and Technology Section A, Molecular Crystals and Liquid Crystals, 2000, 341(2): 357–362
https://doi.org/10.1080/10587250008026166
80 C Y Hsu, T C Chiu, M H Shih, et al. Effect of electron density of Pt catalysts supported on alkali titanate nanotubes in cinnamaldehyde hydrogenation. Journal of Physical Chemistry C, 2010, 114(10): 4502–4510
https://doi.org/10.1021/jp9095198
81 T M F Marques, O P Ferreira, J A P da Costa, et al. Study of the growth of CeO2 nanoparticles onto titanate nanotubes. Journal of Physics and Chemistry of Solids, 2015, 87: 213–220
https://doi.org/10.1016/j.jpcs.2015.08.022
82 M Machida, X Ma, H Taniguchi, et al. Pillaring and photocatalytic property of partially substituted layered titanates, Na2Ti3−xMxO7 and K2Ti4−xMxO9 (M=Mn, Fe, Co, Ni, Cu). Journal of Molecular Catalysis A Chemical, 2000, 155(1–2): 131–142
https://doi.org/10.1016/S1381-1169(99)00329-5
83 F Jiang, Z Zheng, Z Xu, et al. Preparation and characterization of SiO2-pillared H2Ti4O9 and its photocatalytic activity for methylene blue degradation. Journal of Hazardous Materials, 2009, 164(2–3): 1250–1256
https://doi.org/10.1016/j.jhazmat.2008.09.045
84 S Uchida, Y Yamamoto, Y Fujishiro, et al. Intercalation of titanium oxide in layered H2Ti4O9 and H4Nb6O17 and photocatalytic water cleavage with H2Ti4O9/(TiO2, Pt) and H4Nb6O17/(TiO2, Pt) nanocomposites. Journal of the Chemical Society, Faraday Transactions, 1997, 93(17): 3229–3234
https://doi.org/10.1039/a701101f
85 S Ogura, M Kohno, K Sato, et al. Effects of RuO2 on activity for water decomposition of a RuO2/Na2Ti3O7 photocatalyst with a zigzag layer structure. Journal of Materials Chemistry, 1998, 8(11): 2335–2337
https://doi.org/10.1039/a805172k
86 N Harsha, K V S Krishna, N K Renuka, et al. Facile synthesis of γ-Fe2O3 nanoparticles integrated H2Ti3O7 nanotubes structure as a magnetically recyclable dye-removal catalyst. RSC Advances, 2015, 5(38): 30354–30362
https://doi.org/10.1039/C5RA03722K
87 B Lin, Y Zhou, L He, et al. Mesoporous CdS-pillared H2Ti3O7 nanohybrids with efficient photocatalytic activity. Journal of Physics and Chemistry of Solids, 2015, 79: 66–71
https://doi.org/10.1016/j.jpcs.2014.12.003
88 T P Feist, P K Davies. The soft chemical synthesis of TiO2 (B) from layered titanates. Journal of Solid State Chemistry, 1992, 101(2): 275–295
https://doi.org/10.1016/0022-4596(92)90184-W
89 H Y Zhu, Y Lan, X P Gao, et al. Phase transition between nanostructures of titanate and titanium dioxides via simple wet-chemical reactions. Journal of the American Chemical Society, 2005, 127(18): 6730–6736
https://doi.org/10.1021/ja044689+
90 C Zou, X Zhao, Y Xu. One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water. Dalton Transactions (Cambridge, England), 2018, 47(14): 4909–4915
https://doi.org/10.1039/C8DT00405F
91 T T Sirinakorn, S Bureekaew, M Ogawa. Layered titanates (Na2Ti3O7 and Cs2Ti5O11) as very high capacity adsorbents of cadmium(II). Bulletin of the Chemical Society of Japan, 2019, 92(1): 1–6
https://doi.org/10.1246/bcsj.20180253
92 T Tip Sirinakorn, S Bureekaew, M Ogawa. Highly efficient indium(III) collection from water by a reaction with a layered titanate (Na2Ti3O7). European Journal of Inorganic Chemistry, 2018, 2018(34): 3835–3839
https://doi.org/10.1002/ejic.201800510
93 M Shibata, A Kudo, A Tanaka, et al. Photocatalytic activities of layered titanium compounds and their derivatives for H2 evolution from aqueous methanol solution. Chemistry Letters, 1987, 16(6): 1017–1018
https://doi.org/10.1246/cl.1987.1017
94 A Kudo, T Kondo. Photoluminescent and photocatalytic properties of layered caesium titanates, Cs2TinO2n+1 (n=2, 5, 6). Journal of Materials Chemistry, 1997, 7: 777–780
https://doi.org/10.1039/a606297k
95 M Esmat, A A Farghali, S I El-Dek, et al. Conversion of a 2D lepidocrocite-type layered titanate into its 1D nanowire form with enhancement of cation exchange and photocatalytic performance. Inorganic Chemistry, 2019, 58(12): 7989–7996
https://doi.org/10.1021/acs.inorgchem.9b00722
96 Y Hosogi, H Kato, A Kudo. Photocatalytic activities of layered titanates and niobates ion-exchanged with Sn2+ under visible light irradiation. Journal of Physical Chemistry C, 2008, 112(45): 17678–17682
https://doi.org/10.1021/jp805693j
97 C H Lin, J H Chao, W J Tsai, et al. Effects of electron charge density and particle size of alkali metal titanate nanotube-supported Pt photocatalysts on production of H2 from neat alcohol. Physical Chemistry Chemical Physics, 2014, 16(43): 23743–23753
https://doi.org/10.1039/C4CP03503H
98 S W Hong, A Kim, J H Choi, et al. Intercalation of conjugated polyelectrolytes in layered titanate nanosheets for enhancement in photocatalytic activity. Journal of Solid State Chemistry, 2019, 269: 291–296
https://doi.org/10.1016/j.jssc.2018.09.038
99 M Ogawa, M Morita, S Igarashi, et al. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance. Journal of Solid State Chemistry, 2013, 206: 9–13
https://doi.org/10.1016/j.jssc.2013.07.020
100 M A Escobedo Bretado, M A González Lozano, V Collins Martínez, et al. Synthesis, characterization and photocatalytic evaluation of potassium hexatitanate (K2Ti6O13) fibers. International Journal of Hydrogen Energy, 2019, 44(24): 12470–12476
https://doi.org/10.1016/j.ijhydene.2018.06.085
101 H Yoshida, M Takeuchi, M Sato, et al. Potassium hexatitanate photocatalysts prepared by a flux method for water splitting. Catalysis Today, 2014, 232: 158–164
https://doi.org/10.1016/j.cattod.2013.10.046
102 W Soontornchaiyakul, T Fujimura, N Yano, et al. Photocatalytic hydrogen evolution over exfoliated Rh-doped titanate nanosheets. ACS Omega, 2020, 5(17): 9929–9936
https://doi.org/10.1021/acsomega.0c00204
103 S Khan, H Ikari, N Suzuki, et al. One-pot synthesis of anatase, rutile-decorated hydrogen titanate nanorods by yttrium doping for solar H2 production. ACS Omega, 2020, 5(36): 23081–23089
https://doi.org/10.1021/acsomega.0c02855
104 G Liu, L Wang, C Sun, et al. Band-to-band visible-light photon excitation and photoactivity induced by homogeneous nitrogen doping in layered titanates. Chemistry of Materials, 2009, 21(7): 1266–1274
https://doi.org/10.1021/cm802986r
105 M Esmat, H El-Hosainy, R Tahawy, et al. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Applied Catalysis B: Environmental, 2021, 285: 119755
https://doi.org/10.1016/j.apcatb.2020.119755
106 P Li, Q Cao, D Zheng, et al. Synthesis of mesoporous TiO2-B nanobelts with highly crystalized walls toward efficient H2 evolution. Nanomaterials (Basel, Switzerland), 2019, 9(7): 919
https://doi.org/10.3390/nano9070919
107 W Chen, A G Dosado, A Chan, et al. Highly reactive anatase nanorod photocatalysts synthesized by calcination of hydrogen titanate nanotubes: effect of calcination conditions on photocatalytic performance for aqueous dye degradation and H2 production in alcohol-water mixtures. Applied Catalysis A, General, 2018, 565: 98–118
https://doi.org/10.1016/j.apcata.2018.08.004
108 C Wang, X Zhang, Y Zhang, et al. Hydrothermal growth of layered titanate nanosheet arrays on titanium foil and their topotactic transformation to heterostructured TiO2 photocatalysts. Journal of Physical Chemistry C, 2011, 115(45): 22276–22285
https://doi.org/10.1021/jp2093719
109 C Wang, X Zhang, Y Wei, et al. Correlation between band alignment and enhanced photocatalysis: a case study with anatase/TiO2(B) nanotube heterojunction. Dalton Transactions (Cambridge, England), 2015, 44(29): 13331–13339
https://doi.org/10.1039/C5DT01860A
110 Y Li, C Wang, M Song, et al. TiO2–x/CoOx photocatalyst sparkles in photothermocatalytic reduction of CO2 with H2O steam. Applied Catalysis B: Environmental, 2019, 243: 760–770
https://doi.org/10.1016/j.apcatb.2018.11.022
111 H Liu, B Lin, L He, et al. Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis. Chemical Engineering Journal, 2013, 215–216: 396–403
https://doi.org/10.1016/j.cej.2012.11.039
112 W Cui, S Ma, L Liu, et al. Photocatalytic activity of Cd1–xZnxS/K2Ti4O9 for Rhodamine B degradation under visible light irradiation. Applied Surface Science, 2013, 271: 171–181
https://doi.org/10.1016/j.apsusc.2013.01.156
113 R Camposeco, S Castillo, V Rodriguez-González, et al. Promotional effect of Rh nanoparticles on WO3/TiO2 titanate nanotube photocatalysts for boosted hydrogen production. Journal of Photochemistry and Photobiology A, Chemistry, 2018, 353: 114–121
https://doi.org/10.1016/j.jphotochem.2017.11.014
114 A Yousef, N A M Barakat, K A Khalil, et al. Photocatalytic release of hydrogen from ammonia borane-complex using Ni(0)-doped TiO2/C electrospun nanofibers. Colloids and Surfaces A, Physicochemical and Engineering Aspects, 2012, 410: 59–65
https://doi.org/10.1016/j.colsurfa.2012.06.017
115 R Nirmala, H Y Kim, C Yi, N A M Barakat, et al. Electrospun nickel doped titanium dioxide nanofibers as an effective photocatalyst for the hydrolytic dehydrogenation of ammonia borane. International Journal of Hydrogen Energy, 2012, 37(13): 10036–10045
https://doi.org/10.1016/j.ijhydene.2012.03.164
116 V I Simagina, O V Komova, A M Ozerova, et al. TiO2-based photocatalysts for controllable hydrogen evolution from ammonia borane. Catalysis Today, 2020, online, doi:10.1016/j.cattod.2020.04.070
https://doi.org/10.1016/j.cattod.2020.04.070
117 A H Zaki, A E Shalan, A El-Shafeay, et al. Acceleration of ammonium phosphate hydrolysis using TiO2 microspheres as a catalyst for hydrogen production. Nanoscale Advances, 2020, 2(5): 2080–2086
https://doi.org/10.1039/D0NA00204F
118 N A M Barakat, A H Zaki, E Ahmed, et al. FexCo1−x-doped titanium oxide nanotubes as effective photocatalysts for hydrogen extraction from ammonium phosphate. International Journal of Hydrogen Energy, 2018, 43(16): 7990–7997
https://doi.org/10.1016/j.ijhydene.2018.03.055
119 Y Wu, Y Sun, W Fu, et al. Graphene-based modulation on the growth of urchin-like Na2Ti3O7 microspheres for photothermally enhanced H2 generation from ammonia borane. ACS Applied Nano Materials, 2020, 3(3): 2713–2722
https://doi.org/10.1021/acsanm.0c00071
120 H Park, H H Ou, A J Colussi, et al. Artificial photosynthesis of C1–C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots. Journal of Physical Chemistry A, 2015, 119(19): 4658–4666
https://doi.org/10.1021/jp511329d
121 Z Wei, E Kowalska, K Wang, et al. Enhanced photocatalytic activity of octahedral anatase particles prepared by hydrothermal reaction. Catalysis Today, 2017, 280: 29–36
https://doi.org/10.1016/j.cattod.2016.04.028
122 Q Li, T Kako, J Ye. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. International Journal of Hydrogen Energy, 2011, 36(8): 4716–4723
https://doi.org/10.1016/j.ijhydene.2011.01.082
123 Y Ide, W Shirae, T Takei, et al. Merging cation exchange and photocatalytic charge separation efficiency in an anatase/K2Ti4O9 nanobelt heterostructure for metal ions fixation. Inorganic Chemistry, 2018, 57(10): 6045–6050
https://doi.org/10.1021/acs.inorgchem.8b00538
124 J Ding, J Ming, D Lu, et al. Study of the enhanced visible-light-sensitive photocatalytic activity of Cr2O3– loaded titanate nanosheets for Cr(VI) degradation and H2 generation. Catalysis Science & Technology, 2017, 7(11): 2283–2297
https://doi.org/10.1039/C7CY00644F
125 J Xue, L Long, L Zhang, et al. Enhanced H2 evolution and the interfacial electron transfer mechanism of titanate nanotube sensitized with CdS quantum dots and graphene quantum dots. International Journal of Hydrogen Energy, 2020, 45(11): 6476–6486
https://doi.org/10.1016/j.ijhydene.2019.12.196
126 A G Dosado, W Chen, A Chan, et al. Novel Au/TiO2 photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titanate nanotube precursors. Journal of Catalysis, 2015, 330: 238–254
https://doi.org/10.1016/j.jcat.2015.07.014
127 H Wang, X Hu, Y Ma, et al. Nitrate-group-grafting-induced assembly of rutile TiO2 nanobundles for enhanced photocatalytic hydrogen evolution. Chinese Journal of Catalysis, 2020, 41(1): 95–102
https://doi.org/10.1016/S1872-2067(19)63452-2
128 J Dostanić, D Lončarević, V B Pavlović, et al. Efficient photocatalytic hydrogen production over titanate/titania nanostructures modified with nickel. Ceramics International, 2019, 45(15): 19447–19455
https://doi.org/10.1016/j.ceramint.2019.06.200
129 J Huang, Y Jiang, G Li, et al. Hetero-structural NiTiO3/TiO2 nanotubes for efficient photocatalytic hydrogen generation. Renewable Energy, 2017, 111: 410–415
https://doi.org/10.1016/j.renene.2017.04.024
130 I Majeed, M A Nadeem, F K Kanodarwala, et al. Controlled synthesis of TiO2 nanostructures: exceptional hydrogen production in alcohol-water mixtures over Cu(OH)2-Ni(OH)2/TiO2 nanorods. ChemistrySelect, 2017, 2(25): 7497–7507
https://doi.org/10.1002/slct.201701080
131 A Crake, K C Christoforidis, A Gregg, et al. The effect of materials architecture in TiO2/MOF composites on CO2 photoreduction and charge transfer. Small, 2019, 15(11): 1805473
https://doi.org/10.1002/smll.201805473
132 J Li, Z Tang, Z Zhang. H-titanate nanotube: a novel lithium intercalation host with large capacity and high rate capability. Electrochemistry Communications, 2005, 7(1): 62–67
https://doi.org/10.1016/j.elecom.2004.11.009
133 K Chiba, N Kijima, Y Takahashi, et al. Synthesis, structure, and electrochemical Li-ion intercalation properties of Li2Ti3O7 with Na2Ti3O7-type layered structure. Solid State Ionics, 2008, 178(33–34): 1725–1730
https://doi.org/10.1016/j.ssi.2007.11.004
134 P Senguttuvan, G Rousse, V Seznec, et al. Na2Ti3O7: lowest voltage ever reported oxide insertion electrode for sodium ion batteries. Chemistry of Materials, 2011, 23(18): 4109–4111
https://doi.org/10.1021/cm202076g
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed