Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2022, Vol. 16 Issue (1): 1-8   https://doi.org/10.1007/s11708-022-0816-x
  本期目录
Highlights of mainstream solar cell efficiencies in 2021
Wenzhong SHEN1(), Yixin ZHAO2(), Feng LIU3()
1. Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2. School of Environmental Science and Engineering, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
3. School of Chemistry and Chemical Engineering, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(115 KB)   HTML
收稿日期: 2022-01-01      出版日期: 2022-03-30
Corresponding Author(s): Wenzhong SHEN,Yixin ZHAO,Feng LIU   
 引用本文:   
. [J]. Frontiers in Energy, 2022, 16(1): 1-8.
Wenzhong SHEN, Yixin ZHAO, Feng LIU. Highlights of mainstream solar cell efficiencies in 2021. Front. Energy, 2022, 16(1): 1-8.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-022-0816-x
https://academic.hep.com.cn/fie/CN/Y2022/V16/I1/1
Solar cell type PCE/% Area/cm2 VOC/mV JSC/(mA·cm−2) FF/% Test center Report date Description
n-SHJ 25.20 252.1 747.0 39.31 85.82 TüV Nord Feb. GS-Solar
Back junction
n-SHJ 25.26 244.55 748.5 39.48 85.46 ISFH Jun. Longi
Back junction
n-SHJ 25.23 274.5 746.2 40.00 84.64 ISFH Jul. Huasun/Maxwell
Back junction
n-SHJ 25.54 274.5 746.0 40.23 85.08 ISFH Sept. SunDrive/Maxwell
Back junction
Cu plating
n-SHJ 25.82 274.5 750.4 40.20 85.57 ISFH Oct. Longi
Back junction
μc-SiOx:H
a-Si:H bilayer
n-SHJ 26.30 274.3 750.2 40.49 86.59 ISFH Oct. Longi
Back junction
μc-SiOx:H
a-Si:H bilayer
n-TOPCon 24.90 235.80 712.8 41.67 83.84 ISFH Jan. Jinko
LPCVD
n-TOPCon 25.09 242.77 719.8 41.58 83.83 ISFH Apr. Longi
LPCVD
p-TOPCon 26.00 4.00 732.3 42.05 84.30 Fraunhofer ISE Apr. Fraunhofer ISE
PECVD
n-TOPCon 25.80 4.00 724.1 42.87 83.10 Fraunhofer ISE Apr. Fraunhofer ISE
PECVD
n-TOPCon 25.25 267.40 NIM May Jinko
LPCVD
n-TOPCon 25.21 242.97 721.6 41.64 83.90 ISFH May Longi
LPCVD
n-TOPCon 25.23 247.57 721.4 41.75 83.78 ISFH Jun. Jinko
LPCVD
p-TOPCon 25.02 ISFH Jun. Longi
p-TOPCon 25.19 ISFH Jul. Longi
n-TOPCon 25.40 330.15 NIM Sept. Jolywood
PVD
n-TOPCon 25.41 235.79 719.1 42.24 83.66 ISFH Nov. Jinko
LPCVD
n-TOPCon 25.53 3.99 700.7 43.04 84.64 FMI Nov. NIMTE-CAS
PECVD
Tab.1  
Solar cell type PCE/% Area/cm2 VOC/V JSC/(mA·cm−2) FF/% Test center Report date Description
Lead halide perovskite (thin-film) 25.7 0.096 (ap) 1.179 25.8 86.4 Newport Dec. UNIST
Lead halide perovskite (minimodule) 21.4 19.32 (da) 1.149 23.4 79.6 JET Oct. Microquanta
Sn-based perovskite 14.63 0.04 (da) 0.91 20.6 77.1 SIMIT Jul. ShanghaiTech University
Perovskite/perovskite tandem 26.4 0.049 (da) 2.048 16.54 77.9 JET Feb. Two-terminal, NJU
Perovskite/perovskite tandem (minimodule) 21.7 20.25 (da) 2.009 14.22 75.9 JET Aug. Two-terminal, NJU
Perovskite/silicon tandem 29.8 1.016 (ap) Not yet disclosed Fraunhofer ISE Nov. Two-terminal, HZB
Tab.2  
Solar cell type PCE/% Area/cm2 VOC/V JSC/(mA·cm−2) FF/% Test center Report date Description
Organic (thin film) 17.4 0.032 0.862 25.83 78.0 NREL Jan. SJTU/UMass
Organic (thin film) 17.5 NREL City U HK/UW
Organic (thin film) 18.2 0.032 0.896 25.72 78.9 NREL SJTU/BUAA
Organic (thin film) 17.9 0.032 0.871 25.38 81.0 NIM May BUAA/SJTU
Organic (thin film) 18.7 0.062 0.878 26.78 79.4 NIM Aug. IC-CAS
All-polymer (thin film) 16.9 0.051 0.894 24.76 76.5 NIM Apr. WHU
Organic (tandem) 20.0 0.022 2.019 12.97 76.3 NIM Dec. IC-CAS
Tab.3  
1 11th Edition of the international technology roadmap photovoltaics (ITRPV). 2020–4, available at the
2 E. Bellini Saudi Arabia’s second PV tender draws world record low bid of $0.0104/kWh. 2021–4, available at
3 M A Green. The passivated emitter and rear cell (PERC): from conception to mass production. Solar Energy Materials and Solar Cells, 2015, 143: 190–197
https://doi.org/10.1016/j.solmat.2015.06.055
4 K Yoshikawa, H Kawasaki, W Yoshida, et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2(5): 1–8
https://doi.org/10.1038/nenergy.2017.32
5 C Hollemann, F Haase, S Schäfer, et al. 26.1%-efficient POLO-IBC cells: quantification of electrical and optical loss mechanisms. Progress in Photovoltaics: Research and Applications, 2019, 27(11): 950–958
https://doi.org/10.1002/pip.3098
6 M Taguchi, A Yano, S Tohoda, et al. 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE Journal of Photovoltaics, 2014, 4(1): 96–99
https://doi.org/10.1109/JPHOTOV.2013.2282737
7 X Ru, M Qu, J Wang, et al. 25.11% efficiency silicon heterojunction solar cell with low deposition rate intrinsic amorphous silicon buffer layers. Solar Energy Materials and Solar Cells, 2020, 215: 110643
https://doi.org/10.1016/j.solmat.2020.110643
8 M Sharma, J Panigrahi, V K Komarala. Nanocrystalline silicon thin film growth and application for silicon heterojunction solar cells: a short review. Nanoscale Advances, 2021, 3(12): 3373–3383
https://doi.org/10.1039/D0NA00791A
9 J Yu, J Li, Y Zhao, et al. Copper metallization of electrodes for silicon heterojunction solar cells: process, reliability and challenges. Solar Energy Materials and Solar Cells, 2021, 224: 110993
https://doi.org/10.1016/j.solmat.2021.110993
10 A Richter, R Müller, J Benick, et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nature Energy, 2021, 6(4): 429–438
https://doi.org/10.1038/s41560-021-00805-w
11 D Yan, A Cuevas, J I Michel, et al. Polysilicon passivated junctions: the next technology for silicon solar cells? Joule, 2021, 5(4): 811–828
https://doi.org/10.1016/j.joule.2021.02.013
12 P Padhamnath, A Khanna, N Balaji, et al. Progress in screen-printed metallization of industrial solar cells with SiOx/poly-Si passivating contacts. Solar Energy Materials and Solar Cells, 2020, 218: 110751
https://doi.org/10.1016/j.solmat.2020.110751
13 P Zheng, J Yang, Z Wang, et al. Detailed loss analysis of 24.8% large-area screen-printed n-type solar cell with polysilicon passivating contact. Cell Reports Physical Science, 2021, 2(10): 100603
https://doi.org/10.1016/j.xcrp.2021.100603
14 NREL. NREL best research-cell efficiencies: emerging photovoltaics. 2021–12–29, available at
15 M A Green, E D Dunlop, J Hohl-Ebinger, et al. Solar cell efficiency tables (version 59). Progress in Photovoltaics: Research and Applications, 2022, 30(1): 3–12
https://doi.org/10.1002/pip.3506
16 NREL. NREL best research cell efficiency chart. 2021–12–03, available at
17 H Min, D Y Lee, J Kim, et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature, 2021, 598(7881): 444–450
https://doi.org/10.1038/s41586-021-03964-8
18 News release: 21.4%! Microquanta sets new efficiency world record for perovskite minimodule. 2021–12–07, available at
19 J Peng, D Walter, Y Ren, et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371(6527): 390–395
https://doi.org/10.1126/science.abb8687
20 X Jiang, H Li, Q Zhou, et al. One-step synthesis of SnI2·(DMSO)x adducts for high-performance tin perovskite solar cells. Journal of the American Chemical Society, 2021, 143(29): 10970–10976
https://doi.org/10.1021/jacs.1c03032
21 K Xiao, R Lin, Q Han, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nature Energy, 2020, 5(11): 870–880
https://doi.org/10.1038/s41560-020-00705-5
22 A Al-Ashouri, E Köhnen, B Li, et al. Monolithic perovskite/silicon tandem solar cell with>29% efficiency by enhanced hole extraction. Science, 2020, 370(6522): 1300–1309
https://doi.org/10.1126/science.abd4016
23 E. Bellini Helmholtz center achieves 29.80% efficiency for perovskite/silicon tandem solar cell. 2021–12–07, available at
24 E. Bellini HZB scientists announce 24.16% efficiency for tandem CIGS solar cell. 2021–12–07, available at
25 M Zhang, L Zhu, G Zhou, et al. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nature Communications, 2021, 12(1): 309
https://doi.org/10.1038/s41467-020-20580-8
26 C Li, J Zhou, J Song, et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6(6): 605–613
https://doi.org/10.1038/s41560-021-00820-x
27 M Green, E Dunlop, J Hohl-Ebinger, et al. Solar cell efficiency tables (version 57). Progress in Photovoltaics: Research and Applications, 2021, 29(1): 3–15
https://doi.org/10.1002/pip.3371
28 M A Green, E D Dunlop, J Hohl-Ebinger, et al. Solar cell efficiency tables (version 58). Progress in Photovoltaics: Research and Applications, 2021, 29(7): 657–667
https://doi.org/10.1002/pip.3444
29 Y Cui, Y Xu, H Yao, et al. Single-junction organic photovoltaic cell with 19% efficiency. Advanced Materials, 2021, 33(41): 2102420
https://doi.org/10.1002/adma.202102420
30 W Wang, Q Wu, R Sun, et al. Controlling molecular mass of low-band-gap polymer acceptors for high-performance all-polymer solar cells. Joule, 2020, 4(5): 1070–1086
https://doi.org/10.1016/j.joule.2020.03.019
31 R Sun, W Wang, H Yu, et al. Achieving over 17% efficiency of ternary all-polymer solar cells with two well-compatible polymer acceptors. Joule, 2021, 5(6): 1548–1565
https://doi.org/10.1016/j.joule.2021.04.007
32 L Meng, Y Zhang, X Wan, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361(6407): 1094–1098
https://doi.org/10.1126/science.aat2612
33 Z Zheng, J Q Wang, P Q Bi, et al. Tandem organic solar cell with 20.2% efficiency. Joule, 2022, 6: 171–184
https://doi.org/10.1016/j.joule.2021.12.017
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed