Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2022, Vol. 16 Issue (1): 19-22   https://doi.org/10.1007/s11708-022-0820-1
  本期目录
Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration
Xiaoshi QIAN()
Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(908 KB)   HTML
收稿日期: 2022-01-16      出版日期: 2022-03-30
Corresponding Author(s): Xiaoshi QIAN   
 引用本文:   
. [J]. Frontiers in Energy, 2022, 16(1): 19-22.
Xiaoshi QIAN. Pumping into a cool future: electrocaloric materials for zero-carbon refrigeration. Front. Energy, 2022, 16(1): 19-22.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-022-0820-1
https://academic.hep.com.cn/fie/CN/Y2022/V16/I1/19
Fig.1  
Fig.2  
Fig.3  
1 A Thibaut, D. Chiara Is cooling the future of heating? 2020–12–13, available at website of iea gov
2 N Abas, A R Kalair, N Khan. Natural and synthetic refrigerants, global warming: a review. Renewable & Sustainable Energy Reviews, 2018, 90 : 557– 569
https://doi.org/10.1016/j.rser.2018.03.099
3 P Hawken. Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming. Penguin Books, 2018
4 P Kobeco, I V Kurtchatov. Dielectric properties of Rochelle salt crystal. Zeitschrift für Physik, 1930, 66 : 192– 205
5 A S Mischenko, Q Zhang, J F Scott. Electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311( 5765): 1270– 1271
https://doi.org/10.1126/science.1123811
6 B Neese, B Chu, S G Lu. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321( 5890): 821– 823
https://doi.org/10.1126/science.1159655
7 X S Qian, S G Lu, X Li. Large electrocaloric effect in a dielectric liquid possessing a large dielectric anisotropy near the isotropic-nematic transition. Advanced Functional Materials, 2013, 23( 22): 2894– 2898
https://doi.org/10.1002/adfm.201202686
8 J Shi, D Han, Z Li. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3( 5): 1200– 1225
https://doi.org/10.1016/j.joule.2019.03.021
9 S Crossley, T Usui, B Nair. Direct electrocaloric measurement of 0. 9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 films using scanning thermal microscopy. Applied Physics Letters, 2016, 108( 3): 032902–
https://doi.org/10.1063/1.4938758
10 Y Hou, L Yang, X Qian. Electrocaloric response near room temperature in Zr- and Sn-doped BaTiO3 systems. Philosophical Transactions–Royal Society. Mathematical, Physical, and Engineering Sciences, 2016, 374( 2074): 20160055–
https://doi.org/10.1098/rsta.2016.0055
11 X Moya, E Stern-Taulats, S Crossley. Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25( 9): 1360– 1365
https://doi.org/10.1002/adma.201203823
12 X Z Chen, X Li, X S Qian. A nanocomposite approach to tailor electrocaloric effect in ferroelectric polymer. Polymer, 2013, 54( 20): 5299– 5302
https://doi.org/10.1016/j.polymer.2013.07.052
13 X S Qian, H J Ye, Y T Zhang. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24( 9): 1300– 1305
https://doi.org/10.1002/adfm.201302386
14 B Nair, T Usui, S Crossley. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575( 7783): 468– 472
https://doi.org/10.1038/s41586-019-1634-0
15 L Yang, X Qian, C Koo. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range. Nano Energy, 2016, 22 : 461– 467
https://doi.org/10.1016/j.nanoen.2016.02.026
16 Y Chen, J Qian, J Yu. An all-scale hierarchical architecture induces colossal room–temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32( 30): 1907927–
https://doi.org/10.1002/adma.201907927
17 R Ma, Z Zhang, K Tong. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357( 6356): 1130– 1134
https://doi.org/10.1126/science.aan5980
18 Y Meng, Z Zhang, H Wu. A cascade electrocaloric cooling device for large temperature lift. Nature Energy, 2020, 5( 12): 996– 1002
https://doi.org/10.1038/s41560-020-00715-3
19 H Gu, X Qian, X Li. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102( 12): 122904–
https://doi.org/10.1063/1.4799283
20 Annapragada, S. R. High-efficiency solid-state heat pump module. 2017, available at website of energy gov
21 Y Wang, Z Zhang, T Usui. A high-performance solid-state electrocaloric cooling system. Science, 2020, 370( 6512): 129– 133
https://doi.org/10.1126/science.aba2648
22 A Torelló, P Lheritier, T Usui. Giant temperature span in electrocaloric regenerator. Science, 2020, 370( 6512): 125– 129
https://doi.org/10.1126/science.abb8045
23 H Cui, Q Zhang, Y Bo. Flexible microfluidic electrocaloric cooling capillary tube with giant specific device cooling power density. Joule, 2022, 6( 1): 258– 268
https://doi.org/10.1016/j.joule.2021.12.010
24 T Hoyt, E Arens, H Zhang. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Building and Environment, 2015, 88 : 89– 96
https://doi.org/10.1016/j.buildenv.2014.09.010
25 Q Li, J Shi, D Han. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190 : 116806–
https://doi.org/10.1016/j.applthermaleng.2021.116806
26 J Shi, Q Li, T Gao. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2021, 121 : 279– 288
https://doi.org/10.1016/j.ijrefrig.2020.09.011
27 B Peng, Q Zhang, Y Lyu. Thermal strain induced large electrocaloric effect of relaxor thin film on LaNiO3/Pt composite electrode with the coexistence of nanoscale antiferroelectric and ferroelectric phases in a broad temperature range. Nano Energy, 2018, 47 : 285– 293
https://doi.org/10.1016/j.nanoen.2018.03.003
28 X Qian, D Han, L Zheng. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600( 7890): 664– 669
https://doi.org/10.1038/s41586-021-04189-5
29 X Qian, H J Ye, T Yang. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect. Advanced Functional Materials, 2015, 25( 32): 5134– 5139
https://doi.org/10.1002/adfm.201501840
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed