Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (1): 43-71   https://doi.org/10.1007/s11708-022-0853-5
  本期目录
A review on the development of electrolytes for lithium-based batteries for low temperature applications
Jason A. MENNEL1, Dev CHIDAMBARAM2()
1. Department of Chemical and Materials Engineering, University of Nevada−Reno, Reno, NV 89557, USA
2. Department of Chemical and Materials Engineering; Nevada Institute for Sustainability, University of Nevada−Reno, Reno, NV 89557, USA
 全文: PDF(3967 KB)   HTML
Abstract

The aerospace industry relies heavily on lithium-ion batteries in instrumentation such as satellites and land rovers. This equipment is exposed to extremely low temperatures in space or on the Martian surface. The extremely low temperatures affect the discharge characteristics of the battery and decrease its available working capacity. Various solvents, cosolvents, additives, and salts have been researched to fine tune the conductivity, solvation, and solid-electrolyte interface forming properties of the electrolytes. Several different resistive phenomena have been investigated to precisely determine the most limiting steps during charge and discharge at low temperatures. Longer mission lifespans as well as self-reliance on the chemistry are now highly desirable to allow low temperature performance rather than rely on external heating components. As Martian rovers are equipped with greater instrumentation and demands for greater energy storage rise, new materials also need to be adopted involving next generation lithium-ion chemistry to increase available capacity. With these objectives in mind, tailoring of the electrolyte with higher-capacity materials such as lithium metal and silicon anodes at low temperatures is of high priority. This review paper highlights the progression of electrolyte research for low temperature performance of lithium-ion batteries over the previous several decades.

Key wordselectrolyte    lithium-ion    low temperature    aerospace    solid-electrolyte interface
收稿日期: 2022-08-19      出版日期: 2023-03-29
Corresponding Author(s): Dev CHIDAMBARAM   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(1): 43-71.
Jason A. MENNEL, Dev CHIDAMBARAM. A review on the development of electrolytes for lithium-based batteries for low temperature applications. Front. Energy, 2023, 17(1): 43-71.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-022-0853-5
https://academic.hep.com.cn/fie/CN/Y2023/V17/I1/43
Cathode materialTheoretical capacity/ (mAh·g–1)Practical capacity/ (mAh·g–1)
LiCoO2274148
LiFePO4170165
LiMnO2285100–130
Li3V2(PO4)3197> 120
LiNi0.33Mn0.33Co0.33O2280170
LiNi0.8Co0.15Al0.05O2279180–200
Tab.1  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Electrolyte type (all contain 1.0 mol/L LiPF6)Reversible capacity/(mAh·g–1)Irreversible capacity/(mAh·g–1)
EC + DMC + DEC (1:1:1)Cell 123582
Cell 221872
EC + DEC (30:70)Cell 1200112
Cell 2215139
EC + DMC (30:70)Cell 122247
Cell 226249
Tab.2  
SolventTemperature/°CMicropol exchange c.d./ (mA·cm–2)TafelAC impedance
Exchange c.d./(mA·cm–2)Trans coef. Rs/(Ω·cm2)Rf/(Ω·cm2)Exchange c.d./(mA·cm–2)
EC-DMC250.220.080.45 5.5575.9
00.049.74411.8
–200.02 608150.3
EC-DEC250.280.440.69.1528
00.06131701.2
–200.030.0010.65383050.8
EC-DMC-DEC250.280.380.588.8316.8
00.110.0240.3412.61131.7
–200.030.0030.69 13.53590.7
Tab.3  
Fig.5  
Fig.6  
Chemical structure Name m.p. b.p. Viscosity (25 °C) Density Dielectric constant
Ethyl acetate –84 °C 77 °C 0.902
Methyl propionate –87.5 °C 79.8 °C 0.431 cP 0.915 6.2
Ethyl propionate –73 °C 99 °C 0.888
Methyl butyrate –85.8 °C 102.8 °C 0.541 cP 0.898 5.48
Ethyl butyrate –93 °C 120 °C 0.639 cP 0.878 5.18
Propyl butyrate –95.2 °C 143 °C 0.873 4.3
Butyl butyrate –91.5 °C 164 °C 0.829
Tab.4  
Cosolvent25°C (25 mA)–20°C
Rev. (1st cycle)/(mAh·g–1)Irr. (1st cycle)/(mAh·g–1)Rev. (5th cycle)/(mAh·g–1)Cumulative irr. (5th cycle)/(mAh·g–1)Rev. at 25 mA/(mAh·g–1)
Baseline227106305127259
MA201372375714
EA210502146937
EP2334933288207
EB2725630191292
Tab.5  
Fig.7  
Fig.8  
Electrolyte typeCharge capacity/Ah (1st cycle)Discharge capacity/Ah (1st cycle)Irreversible capacity (1st cycle)Coulombic efficiency (1st cycle)Charge capacity/Ah (5th cycle)Reversible capacity/Ah (5th cycle)Cumulative irreversible capacity (1st–5th cycle)Coulombic efficiency (5th cycle)
1.0 mol/L LiPF60.47880.41060.06885.750.41170.39790.131396.65
EC + DEC + DMC (1:1:1 v/v%)
1.0 mol/L LiPF60.46820.40440.06486.390.40130.39140.113697.53
EC + EMC (20:80 v/v%)
1.0 mol/L LiPF60.5060.43830.06886.610.42910.42710.082999.55
EC + EMC + MP (20:60:20 v/v%)
1.0 mol/L LiPF60.47930.40820.07185.180.40040.3930.10998.17
EC + EMC + EP (20:60:20 v/v%)
1.0 mol/L LiPF60.45640.3910.06585.670.39220.38130.116297.21
EC + EMC + MB (20:60:20 v/v%)
1.0 mol/L LiPF60.49480.42630.06986.160.41090.40880.085799.49
EC + EMC + EB (20:60:20 v/v%)
1.0 mol/L LiPF60.44550.38050.06585.410.37880.37170.098998.13
EC + EMC + PB (20:60:20 v/v%)
1.0 mol/L LiPF60.45680.39610.06186.730.39410.38730.094898.27
EC + EMC + BB (20:60:20 v/v%)
Tab.6  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Electrolyte typeCharge capacity/Ah (1st cycle)Discharge capacity/Ah (1st cycle)Irreversible capacity/Ah (1st cycle)Coulombic efficiency (1st cycle)Charge capacity/Ah (5th cycle)Discharge capacity/Ah (5th cycle)Cumulative irrev. Capacity (1st–5th cycle)Coulombic efficiency (5th cycle)
1.2 mol/L LiPF6 EC + EMC + MB (20:20:60)0.47910.40710.07284.960.41040.39730.132696.80
1.2 mol/L LiPF6 EC + EMC + MB (20:20:60) + 4% FEC0.46190.39980.06286.550.38310.38250.072699.83
1.2 mol/L LiPF6 EC + EMC + MB (20:20:60) + lithium oxalate0.45710.39350.06486.100.39270.38500.101198.05
1.2 mol/L LiPF6 EC + EMC + MB (20:20:60) + 2% VC0.47110.39380.07783.590.39390.38680.115398.20
1.2 mol/L LiPF6 EC + EMC + MB (20:20:60) + 0.10 mol/L LiBOB0.38560.31960.06682.870.40540.39690.112397.92
Tab.7  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
1 X Wang, S Tang, W Guo. et al.. Advances in multimetallic alloy-based anodes for alkali-ion and alkali-metal batteries. Materials Today, 2021, 50(11): 259–275
https://doi.org/10.1016/j.mattod.2021.05.001
2 A Yoshino. The birth of the lithium-ion battery. Angewandte Chemie International Edition, 2012, 51(24): 5798–5800
https://doi.org/10.1002/anie.201105006
3 A Manthiram. An outlook on lithium ion battery technology. ACS Central Science, 2017, 3(10): 1063–1069
https://doi.org/10.1021/acscentsci.7b00288
4 R M Wittman, M L Perry, T N Lambert. et al.. Perspective—on the need for reliability and safety studies of grid-scale aqueous batteries. Journal of the Electrochemical Society, 2020, 167(9): 090545
https://doi.org/10.1149/1945-7111/ab9406
5 J Jaguemont, L Boulon, Y Dubé. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 2016, 164: 99–114
https://doi.org/10.1016/j.apenergy.2015.11.034
6 B V Ratnakumar, M C Smart, C K Huang. et al.. Lithium ion batteries for Mars exploration missions. Electrochimica Acta, 2000, 45(8–9): 1513–1517
https://doi.org/10.1016/S0013-4686(99)00367-9
7 B V Ratnakumar, M C Smart, A Kindler. et al.. Lithium batteries for aerospace applications: 2003 Mars Exploration Rover. Journal of Power Sources, 2003, 119–121: 906–910
https://doi.org/10.1016/S0378-7753(03)00220-9
8 C K Huang, J S Sakamoto, J Wolfenstine. et al.. The limits of low-temperature performance of Li-ion cells. Journal of the Electrochemical Society, 2000, 147(8): 2893–2896
https://doi.org/10.1149/1.1393622
9 M C Smart, B V Ratnakumar, S Surampudi. Electrolytes for low-temperaturelithium batteries based on ternary mixtures of aliphatic carbonates. Journal of the Electrochemical Society, 1999, 146(2): 486–492
https://doi.org/10.1149/1.1391633
10 M C SmartB V RatnakumarS Surampudi. Electrolytes for Li-ion cells in low temperature applications. In: 14th Annual Battery Conference on Applications and Advances, Long Beach, USA, 1999
11 M C SmartB V RatnakumarS Greenbaum, et al.. The role of electrolyte upon the SEI formation characteristics and low temperature performance of lithium-ion cells with graphite anodes. Proceedings—Electrochemical Society, 1999, 98–16: 441–447
12 M C SmartB V RatnakumarL Whitcanack, et al.. Performance characteristics of lithium ion cells at low temperatures. In: Proceedings of the Annual Battery Conference on Applications and Advances, Long Beach, USA, 2002
13 M C Smart, B V Ratnakumar. Effects of electrolyte composition on lithium plating in lithium-ion cells. Journal of the Electrochemical Society, 2011, 158(4): A379–A389
https://doi.org/10.1149/1.3544439
14 J Arai, R Nakahigashi. Study of Li metal deposition in lithium ion battery during low-temperature cycle using in situ solid-state 7 Li nuclear magnetic resonance. Journal of the Electrochemical Society, 2017, 164(13): A3403–A3409
https://doi.org/10.1149/2.1921713jes
15 B V Ratnakumar, M C Smart, S Surampudi. Electrochemical impedance spectroscopy and its applications. In: Annual Battery Conference on Applications and Advances, 2002, 273–277
16 B V Ratnakumar, M C Smart, S Surampudi. Effects of SEI on the kinetics of lithium intercalation. Journal of Power Sources, 2001, 97–98: 137–139
https://doi.org/10.1016/S0378-7753(01)00682-6
17 M C Smart, B V Ratnakumar, S Surampudi. et al.. Irreversible capacities of graphite in low-temperature electrolytes for lithium-ion batteries. Journal of the Electrochemical Society, 1999, 146(11): 3963–3969
https://doi.org/10.1149/1.1392577
18 M C Smart, B V Ratnakumar, R C Ewell. et al.. The use of lithium-ion batteries for JPL’s Mars missions. Electrochimica Acta, 2018, 268: 27–40
https://doi.org/10.1016/j.electacta.2018.02.020
19 T L Kulova, A M Skundin. A critical review of electrode materials and electrolytes for low-temperature lithium-ion batteries. International Journal of Electrochemical Science, 2020, 15(9): 8638–8661
https://doi.org/10.20964/2020.09.50
20 M C Smart, B V Ratnakumar, L D Whitcanack. et al.. Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes. Journal of Power Sources, 2003, 119–121: 349–358
https://doi.org/10.1016/S0378-7753(03)00154-X
21 M C Smart, B V Ratnakumar, A Behar. et al.. Gel polymer electrolyte lithium-ion cells with improved low temperature performance. Journal of Power Sources, 2007, 165(2): 535–543
https://doi.org/10.1016/j.jpowsour.2006.10.038
22 M C Smart, B L Lucht, S Dalavi. et al.. The effect of additives upon the performance of MCMB/LiNixCo1−xO2 Li-ion cells containing methyl butyrate-based wide operating temperature range electrolytes. Journal of the Electrochemical Society, 2012, 159(6): A739–A751
https://doi.org/10.1149/2.058206jes
23 J P Jones, M C Smart, F C Krause. et al.. The effect of electrolyte additives upon lithium plating during low temperature charging of graphite-LiNiCoAlO2 lithium-ion three electrode cells. Journal of the Electrochemical Society, 2020, 167(2): 020536
https://doi.org/10.1149/1945-7111/ab6bc2
24 V Etacheri, O Haik, Y Goffer. et al.. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir, 2012, 28(1): 965–976
https://doi.org/10.1021/la203712s
25 M C Smart, B V Ratnakumar, S Surampudi. Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance. Journal of the Electrochemical Society, 2002, 149(4): A361–A370
https://doi.org/10.1149/1.1453407
26 M C Smart, B V Ratnakumar, L D Whitcanack. et al.. Li-ion electrolytes containing ester Co-solvents for wide operating temperature range. ECS Transactions, 2008, 11(29): 99–108
https://doi.org/10.1149/1.2938912
27 J Zheng, P Yan, R Cao. et al.. Effects of propylene carbonate content in CsPF6-containing electrolytes on the enhanced performances of graphite electrode for lithium-ion batteries. ACS Applied Materials & Interfaces, 2016, 8(8): 5715–5722
https://doi.org/10.1021/acsami.5b12517
28 T Kim, W Song, D Y Son. et al.. Lithium-ion batteries: outlook on present, future, and hybridized technologies. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(7): 2942–2964
https://doi.org/10.1039/C8TA10513H
29 A Purwanto, C S Yudha, U Ubaidillah. et al.. NCA cathode material: synthesis methods and performance enhancement efforts. Materials Research Express, 2018, 5(12): 122001
https://doi.org/10.1088/2053-1591/aae167
30 P G Bruce, A R Armstrong, R L Gitzendanner. New intercalation compounds for lithium batteries: layered LiMnO2. Journal of Materials Chemistry, 1999, 9(1): 193–198
https://doi.org/10.1039/a803938k
31 C Liu, R Massé, X Nan. et al.. A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Materials, 2016, 4: 15–58
https://doi.org/10.1016/j.ensm.2016.02.002
32 Q Ni, L Zheng, Y Bai. et al.. An extremely fast charging Li3V2(PO4)3 cathode at a 4.8 V cutoff voltage for Li-ion batteries. ACS Energy Letters, 2020, 5(6): 1763–1770
https://doi.org/10.1021/acsenergylett.0c00702
33 S Vadivel, N Phattharasupakun, J Wutthiprom. et al.. High-performance Li-ion batteries using nickel-rich lithium nickel cobalt aluminium oxide−nanocarbon core−shell cathode: in operando X–ray diffraction. ACS Applied Materials & Interfaces, 2019, 11(34): 30719–30727
https://doi.org/10.1021/acsami.9b06553
34 P Yan, J Zheng, D Lv. et al.. Atomic-resolution visualization of distinctive chemical mixing behavior of Ni, Co, and Mn with Li in layered lithium transition-metal oxide cathode materials. Chemistry of Materials, 2015, 27(15): 5393–5401
https://doi.org/10.1021/acs.chemmater.5b02016
35 K Zaghib, M Dontigny, P Perret. et al.. Electrochemical and thermal characterization of lithium titanate spinel anode in C–LiFePO4//C-Li4Ti5O12 cells at sub-zero temperatures. Journal of Power Sources, 2014, 248: 1050–1057
https://doi.org/10.1016/j.jpowsour.2013.09.083
36 R Qin, Y Wei, T Zhai. et al.. LISICON structured Li3V2(PO4)3 with high rate and ultralong life for low-temperature lithium-ion batteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2018, 6(20): 9737–9746
https://doi.org/10.1039/C8TA01124A
37 C K Ho, C Y V Li, Z Deng. et al.. Hierarchical macropore-mesoporous shell carbon dispersed with Li4Ti5O12 for excellent high rate sub-freezing Li-ion battery performance. Carbon, 2019, 145: 614–621
https://doi.org/10.1016/j.carbon.2019.01.068
38 Y Na, X Sun, A Fan. et al.. Methods for enhancing the capacity of electrode materials in low-temperature lithium-ion batteries. Chinese Chemical Letters, 2020, 32(3): 973–982
https://doi.org/10.1016/j.cclet.2020.09.007
39 Q Li, D Lu, J Zheng. et al.. Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Applied Materials & Interfaces, 2017, 9(49): 42761–42768
https://doi.org/10.1021/acsami.7b13887
40 T Okumura, T Horiba. Phase transition of carbonate solvent mixture solutions at low temperatures. Journal of Power Sources, 2016, 301: 138–142
https://doi.org/10.1016/j.jpowsour.2015.09.115
41 M C Smart, B V Ratnakumar, K B Chin. et al.. Lithium-ion electrolytes containing ester cosolvents for improved low temperature performance. Journal of the Electrochemical Society, 2010, 157(12): A1361–A1374
https://doi.org/10.1149/1.3501236
42 M C Smart, B Ratnakumar, L Whitcanack. et al.. Performance demonstration of MCMB-LiNiCoO2 cells containing electrolytes designed for wide operating temperature range. ECS Transactions, 2010, 25(36): 273–282
https://doi.org/10.1149/1.3393863
43 M C Smart, B V Ratnakumar, L D Whitcanack. et al.. Life verification of large capacity Yardney Li-ion cells and batteries in support of NASA missions. International Journal of Energy Research, 2010, 34(2): 116–132
https://doi.org/10.1002/er.1653
44 K A Smith, M C Smart, G K S Prakash. et al.. Electrolytes containing fluorinated ester Co-solvents for low-temperature Li-ion cells. ECS Transactions, 2008, 11(29): 91–98
https://doi.org/10.1149/1.2938911
45 S S Zhang. Lithium oxalyldifluoroborate as a salt for the improved electrolytes of Li-ion batteries. ECS Meeting Abstracts, 2006, MA2006-02(5): 267–267
https://doi.org/10.1149/1.2793579
46 Q Li, G Liu, H Cheng. et al.. Low-temperature electrolyte design for lithium-ion batteries: prospect and challenges. Chemistry (Weinheim an der Bergstrasse, Germany), 2021, 27(64): 15842–15865
https://doi.org/10.1002/chem.202101407
47 Y Jin, N J H Kneusels, L E Marbella. et al.. Understanding fluoroethylene carbonate and binylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. Journal of the American Chemical Society, 2018, 140(31): 9854–9867
https://doi.org/10.1021/jacs.8b03408
48 G Bachand. Using copper nanoparticle additive to improve the performance of silicon anodes in lithium-ion batteries. Dissertation for the Master’s Degree. Reno: University of Nevada, 2017
49 J Holoubek, M Yu, S Yu. et al.. An all-fluorinated ester electrolyte for stable high-voltage Li metal batteries capable of ultra-low-temperature operation. ACS Energy Letters, 2020, 5(5): 1438–1447
https://doi.org/10.1021/acsenergylett.0c00643
50 H Zheng, H Xiang, F Jiang. et al.. Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries. Advanced Energy Materials, 2020, 10(30): 2001440
https://doi.org/10.1002/aenm.202001440
51 A C Thenuwara, P P Shetty, M T McDowell. Distinct nanoscale interphases and morphology of lithium metal electrodes operating at low temperatures. Nano Letters, 2019, 19(12): 8664–8672
https://doi.org/10.1021/acs.nanolett.9b03330
52 N Zhang, T Deng, S Zhang. et al.. Critical review on low-temperature Li-ion/metal batteries. Advanced Materials, 2022, 34(15): 1–31
https://doi.org/10.1002/adma.202107899
53 X Dong, Y G Wang, Y Xia. Promoting rechargeable batteries operated at low temperature. Accounts of Chemical Research, 2021, 54(20): 3883–3894
https://doi.org/10.1021/acs.accounts.1c00420
54 J Holoubek, H Liu, Z Wu. et al.. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nature Energy, 2021, 6(3): 303–313
https://doi.org/10.1038/s41560-021-00783-z
55 A C Thenuwara, P P Shetty, N Kondekar. et al.. Efficient low-temperature cycling of lithium metal anodes by tailoring the solid-electrolyte interphase. ACS Energy Letters, 2020, 5(7): 2411–2420
https://doi.org/10.1021/acsenergylett.0c01209
56 A Gupta, A Manthiram. Designing advanced lithium-based batteries for low-temperature conditions. Advanced Energy Materials, 2020, 10(38): 2001972
https://doi.org/10.1002/aenm.202001972
57 J Zhou, H Ji, Y Qian. et al.. Molecular simulations guided polymer electrolyte towards superior low-temperature solid lithium-metal batteries. ACS Applied Materials & Interfaces, 2021, 13(41): 48810–48817
https://doi.org/10.1021/acsami.1c14825
58 S Song, Y Wu, W Tang. et al.. Composite solid polymer electrolyte with garnet nanosheets in poly(ethylene oxide). ACS Sustainable Chemistry & Engineering, 2019, 7(7): 7163–7170
https://doi.org/10.1021/acssuschemeng.9b00143
59 F Zhu, H Bao, X Wu. et al.. High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries. ACS Applied Materials & Interfaces, 2019, 11(46): 43206–43213
https://doi.org/10.1021/acsami.9b15374
60 C Fu, G Homann, R Grissa. et al.. A polymerized-ionic-liquid-based polymer electrolyte with high oxidative stability for 4 and 5 V class solid-state lithium metal batteries. Advanced Energy Materials, 2022, 12(27): 2200412
https://doi.org/10.1002/aenm.202200412
61 J Liu, R Xu, C Yan. et al.. In situ regulated solid electrolyte interphase via reactive separators for highly efficient lithium metal batteries. Energy Storage Materials, 2020, 30(5): 27–33
https://doi.org/10.1016/j.ensm.2020.04.043
62 B Yao, Z Ding, J Zhang. et al.. Encapsulation of LiFePO4 by in-situ graphitized carbon cage towards enhanced low temperature performance as cathode materials for lithium-ion batteries. Journal of Solid State Chemistry, 2014, 216: 9–12
https://doi.org/10.1016/j.jssc.2014.04.023
63 C Fu, S Shen, R Wu. et al.. Facile controlled synthesis of hierarchically structured mesoporous Li4Ti5O12/C/RGO composites as high-performance anode of lithium-ion batteries. Frontiers in Energy, 2022, 16(4): 607–612
https://doi.org/10.1007/s11708-021-0798-0
64 Y Gao, T Rojas, K Wang. et al.. Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nature Energy, 2020, 5(7): 534–542
https://doi.org/10.1038/s41560-020-0640-7
65 Z Bian, Z Tang, J Xie. et al.. Preparation and lithium storage performances of G-C3N4/Si nanocomposites as anode materials for lithium-ion battery. Frontiers in Energy, 2020, 14(4): 759–766
https://doi.org/10.1007/s11708-020-0810-0
66 H Wu, G Chan, J W Choi. et al.. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotechnology, 2012, 7(5): 310–315
https://doi.org/10.1038/nnano.2012.35
67 D Hubble, D E Brown, Y Zhao. et al.. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy & Environmental Science, 2022, 15(2): 550–578
https://doi.org/10.1039/D1EE01789F
68 Y Domi, H Usui, T Hirosawa. et al.. Impact of low temperatures on the lithiation and delithiation properties of Si-based electrodes in ionic liquid electrolytes. ACS Omega, 2022, 7(18): 15846–15853
https://doi.org/10.1021/acsomega.2c00947
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed