Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (4): 463-477   https://doi.org/10.1007/s11708-023-0860-1
  本期目录
Phase transition regulation and caloric effect
Yuan LIN1, Jiazheng HAO2, Kaiming QIAO3, Yihong GAO1, Fengxia HU4(), Jing WANG1, Tongyun ZHAO5, Baogen SHEN6
1. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
2. Spallation Neutron Source Science Center, Dongguan 523803, China; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
3. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
4. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China; Songshan Lake Materials Laboratory, Dongguan 523808, China
5. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
6. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China; Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
 全文: PDF(10742 KB)   HTML
Abstract

Solid state refrigeration based on caloric effect is regarded as a potential candidate for replacing vapor-compression refrigeration. Numerous methods have been proposed to optimize the refrigeration properties of caloric materials, of which single field tuning as a relatively simple way has been systemically studied. However, single field tuning with few tunable parameters usually obtains an excellent performance in one specific aspect at the cost of worsening the performance in other aspects, like attaining a large caloric effect with narrowing the transition temperature range and introducing hysteresis. Because of the shortcomings of the caloric effect driven by a single field, multifield tuning on multicaloric materials that have a coupling between different ferro-orders came into view. This review mainly focuses on recent studies that apply this method to improve the cooling performance of materials, consisting of enlarging caloric effects, reducing hysteresis losses, adjusting transition temperatures, and widening transition temperature spans, which indicate that further progress can be made in the application of this method. Furthermore, research on the sign of lattice and spin contributions to the magnetocaloric effect found new phonon evolution mechanisms, calling for more attention on multicaloric effects. Other progress including improving cyclability of FeRh alloys by introducing second phases and realizing a large reversible barocaloric effect by hybridizing carbon chains and inorganic groups is described in brief.

Key wordsphase transition regulation    caloric effect    solid state refrigeration
收稿日期: 2022-10-18      出版日期: 2023-08-29
Corresponding Author(s): Fengxia HU   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(4): 463-477.
Yuan LIN, Jiazheng HAO, Kaiming QIAO, Yihong GAO, Fengxia HU, Jing WANG, Tongyun ZHAO, Baogen SHEN. Phase transition regulation and caloric effect. Front. Energy, 2023, 17(4): 463-477.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0860-1
https://academic.hep.com.cn/fie/CN/Y2023/V17/I4/463
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 K A Jr Gschneidner, V K Pecharsky, A O Tsokol. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, 68(6): 1479–1539
https://doi.org/10.1088/0034-4885/68/6/R04
2 V Franco, J S Blazquez, J J Ipus. et al.. Magnetocaloric effect: From materials research to refrigeration devices. Progress in Materials Science, 2018, 93: 112–232
https://doi.org/10.1016/j.pmatsci.2017.10.005
3 B G Shen, J R Sun, F X Hu. et al.. Recent progress in exploring magnetocaloric materials. Advanced Materials, 2009, 21(45): 4545–4564
https://doi.org/10.1002/adma.200901072
4 X Q Zheng, B G Shen. The magnetic properties and magnetocaloric effects in binary R-T (R = Pr, Gd, Tb, Dy, Ho, Er, Tm; T = Ga, Ni, Co, Cu) intermetallic compounds. Chinese Physics B, 2017, 26(2): 027501
https://doi.org/10.1088/1674-1056/26/2/027501
5 L Li, M Yan. Recent progress in the development of RE2TMTM’O6 double perovskite oxides for cryogenic magnetic refrigeration. Journal of Materials Science and Technology, 2023, 136: 1–12
https://doi.org/10.1016/j.jmst.2022.01.041
6 Y Zhang, Y Tian, Z Zhang. et al.. Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide. Acta Materialia, 2022, 226: 117669
https://doi.org/10.1016/j.actamat.2022.117669
7 Y Zhang, J Zhu, S Li. et al.. Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound. Science China Materials, 2022, 65(5): 1345–1352
https://doi.org/10.1007/s40843-021-1967-5
8 Y K Zhang, J H Wu, J He. et al.. Solutions to obstacles in the commercialization of room-temperature magnetic refrigeration. Renewable & Sustainable Energy Reviews, 2021, 143: 110933
https://doi.org/10.1016/j.rser.2021.110933
9 L W Li, M Yan. Recent progresses in exploring the rare earth based intermetallic compounds for cryogenic magnetic refrigeration. Journal of Alloys and Compounds, 2020, 823: 153810
https://doi.org/10.1016/j.jallcom.2020.153810
10 F Gao, J Sheng, W Ren. et al.. Incommensurate spin density wave and magnetocaloric effect in the metallic triangular lattice HoAl2Ge2. Physical Review. B, 2022, 106(13): 134426
https://doi.org/10.1103/PhysRevB.106.134426
11 B Neese, B Chu, S G Lu. et al.. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823
https://doi.org/10.1126/science.1159655
12 X S Qian, D L Han, L R Zheng. et al.. High-entropy polymer produces a giant electrocaloric effect at low fields. Nature, 2021, 600(7890): 664–669
https://doi.org/10.1038/s41586-021-04189-5
13 R Ma, Z Zhang, K Tong. et al.. Highly efficient electrocaloric cooling with electrostatic actuation. Science, 2017, 357(6356): 1130–1134
https://doi.org/10.1126/science.aan5980
14 A Greco, C Masselli. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67
https://doi.org/10.3390/magnetochemistry6040067
15 Y Q Chen, J F Qian, J Y Yu. et al.. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites. Advanced Materials, 2020, 32(30): 1907927
https://doi.org/10.1002/adma.201907927
16 X Niu, X D Jian, W P Gong. et al.. Field-driven merging of polarizations and enhanced electrocaloric effect in BaTiO3-based lead-free ceramics. Journal of Advanced Ceramics, 2022, 11(11): 1777–1788
https://doi.org/10.1007/s40145-022-0647-6
17 K L Zou, C C Shao, P J Bai. et al.. Giant room-temperature electrocaloric effect of polymer-ceramic composites with orientated BaSrTiO3 nanofibers. Nano Letters, 2022, 22(16): 6560–6566
https://doi.org/10.1021/acs.nanolett.2c01776
18 J Tušek, K Engelbrecht, D Eriksen. et al.. A regenerative elastocaloric heat pump. Nature Energy, 2016, 1(10): 16134
https://doi.org/10.1038/nenergy.2016.134
19 Z Zhao, W Guo, Z Zhang. Room-temperature colossal elastocaloric effects in three-dimensional graphene architectures: an atomistic study. Advanced Functional Materials, 2022, 32(42): 2203866
https://doi.org/10.1002/adfm.202203866
20 P Dang, F Ye, Y Zhou. et al.. Low-fatigue and large room-temperature elastocaloric effect in a bulk Ti49.2Ni40.8Cu10 alloy. Acta Materialia, 2022, 229: 117802
https://doi.org/10.1016/j.actamat.2022.117802
21 D Li, Z Li, X Zhang. et al.. Giant elastocaloric effect in Ni-Mn-Ga-based alloys boosted by a large lattice volume change upon the Martensitic transformation. ACS Applied Materials & Interfaces, 2022, 14(1): 1505–1518
https://doi.org/10.1021/acsami.1c22235
22 L Mañosa, A Planes. Materials with giant mechanocaloric effects: Cooling by strength. Advanced Materials, 2017, 29(11): 1603607
https://doi.org/10.1002/adma.201603607
23 X Moya, N D Mathur. Caloric materials for cooling and heating. Science, 2020, 370(6518): 797–803
https://doi.org/10.1126/science.abb0973
24 B Li, Y Kawakita, S Ohira-Kawamura. et al.. Colossal barocaloric effects in plastic crystals. Nature, 2019, 567(7749): 506–510
https://doi.org/10.1038/s41586-019-1042-5
25 F B Li, M Li, X Xu. et al.. Understanding colossal barocaloric effects in plastic crystals. Nature Communications, 2020, 11(1): 4190
https://doi.org/10.1038/s41467-020-18043-1
26 J Lin, P Tong, X Zhang. et al.. Giant room-temperature barocaloric effect at the electronic phase transition in Ni1−xFexS. Materials Horizons, 2020, 7(10): 2690–2695
https://doi.org/10.1039/C9MH01976F
27 K Zhang, R Song, J Qi. et al.. Colossal barocaloric effect in carboranes as a performance tradeoff. Advanced Functional Materials, 2022, 32(20): 2112622
https://doi.org/10.1002/adfm.202112622
28 Q Ren, J Qi, D Yu. et al.. Ultrasensitive barocaloric material for room-temperature solid-state refrigeration. Nature Communications, 2022, 13(1): 2293
https://doi.org/10.1038/s41467-022-29997-9
29 M Romanini, Y Wang, K Gurpinar. et al.. Giant and reversible barocaloric effect in trinuclear spin-crossover complex Fe3(bntrz)6(tcnset)6. Advanced Materials, 2021, 33(10): 2008076
https://doi.org/10.1002/adma.202008076
30 A Aznar, P Negrier, A Planes. et al.. Reversible colossal barocaloric effects near room temperature in 1-X-adamantane (X = Cl, Br) plastic crystals. Applied Materials Today, 2021, 23: 101023
https://doi.org/10.1016/j.apmt.2021.101023
31 W Imamura, E O Usuda, L S Paixao. et al.. Supergiant barocaloric effects in acetoxy silicone rubber over a wide temperature range: Great potential for solid-state cooling. Chinese Journal of Polymer Science, 2020, 38(9): 999–1005
https://doi.org/10.1007/s10118-020-2423-9
32 A Aznar, P Lloveras, M Barrio. et al.. Reversible and irreversible colossal barocaloric effects in plastic crystals. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2020, 8(2): 639–647
https://doi.org/10.1039/C9TA10947A
33 Y Gao, H Liu, F Hu. et al.. Reversible colossal barocaloric effect dominated by disordering of organic chains in (CH3-(CH2)n–1-NH3)2MnCl4 single crystals. NPG Asia Materials, 2022, 14(1): 34
https://doi.org/10.1038/s41427-022-00378-4
34 V K Pecharsky, K A Jr Gschneidner. Giant magnetocaloric effect in Gd5(Si2Ge2). Physical Review Letters, 1997, 78(23): 4494–4497
https://doi.org/10.1103/PhysRevLett.78.4494
35 V K Pecharsky, K A Jr Gschneidner. Effect of alloying on the giant magnetocaloric effect of Gd5(Si2Ge2). Journal of Magnetism and Magnetic Materials, 1997, 167(3): L179–L184
https://doi.org/10.1016/S0304-8853(96)00759-7
36 S A Nikitin, G Myalikgulyev, A M Tishin. et al.. The magnetocaloric effect in FE49RH51 compound. Physics Letters. [Part A], 1990, 148(6–7): 363–366
https://doi.org/10.1016/0375-9601(90)90819-A
37 M P Annaorazov, S A Nikitin, A L Tyurin. et al.. Anomalously high entropy change in FeRh alloy. Journal of Applied Physics, 1996, 79(3): 1689–1695
https://doi.org/10.1063/1.360955
38 F X Hu, B G Shen, J R Sun. et al.. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6. Applied Physics Letters, 2001, 78(23): 3675–3677
https://doi.org/10.1063/1.1375836
39 N A de Oliveira. Giant magnetocaloric and barocaloric effects in R5Si2Ge2 (R = Tb, Gd). Journal of Applied Physics, 2013, 113(3): 033910
https://doi.org/10.1063/1.4776729
40 F X Hu, B G Shen, J R Sun. et al.. Great magnetic entropy change in La(Fe, M)13 (M = Si, Al) with Co doping. Chinese Physics (Beijing), 2000, 9(7): 550–553
https://doi.org/10.1088/1009-1963/9/7/016
41 A Fujita, S Fujieda, Y Hasegawa. et al.. Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1–x)13 compounds and their hydrides. Physical Review B: Condensed Matter, 2003, 67(10): 104416
https://doi.org/10.1103/PhysRevB.67.104416
42 H Wada, Y Tanabe. Giant magnetocaloric effect of MnAs1–xSbx. Applied Physics Letters, 2001, 79(20): 3302–3304
https://doi.org/10.1063/1.1419048
43 N UI Hassan, I A Shah, T Khan. et al.. Magnetostructural transformation and magnetocaloric effect in Mn48−xVxNi42Sn10 ferromagnetic shape memory alloys. Chinese Physics B, 2018, 27(3): 037504
https://doi.org/10.1088/1674-1056/27/3/037504
44 H Yang, J Liu, C Li. et al.. Ferromagnetism and magnetostructural coupling in V-doped MnNiGe alloys. Chinese Physics B, 2018, 27(10): 107502
https://doi.org/10.1088/1674-1056/27/10/107502
45 L F Bao, W D Huang, Y J Ren. Tuning martensitic phase transition by non-magnetic atom vacancy in MnCoGe alloys and related giant magnetocaloric effect. Chinese Physics Letters, 2016, 33(7): 077502
https://doi.org/10.1088/0256-307X/33/7/077502
46 H Zhang, C F Xing, K W Long. et al.. Linear dependence of magnetocaloric effect on magnetic field in Mn0.6Fe0.4NiSi0.5Ge0.5 and Ni50Mn34Co2Sn14 with first-order magnetostructural transformation. Acta Physics Sinica, 2018, 67(20): 207501 (in Chinese)
https://doi.org/10.7498/aps.67.20180927
47 B Zhang, X Q Zheng, T Y Zhao. et al.. Machine learning technique for prediction of magnetocaloric effect in La(Fe,Si/Al)13-based materials. Chinese Physics B, 2018, 27(6): 067503
https://doi.org/10.1088/1674-1056/27/6/067503
48 P O Castillo-Villa, D E Soto-Parra, J A Matutes-Aquino. et al.. Caloric effects induced by magnetic and mechanical fields in a Ni50Mn25–xGa25Cox magnetic shape memory alloy. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(17): 174109
https://doi.org/10.1103/PhysRevB.83.174109
49 J Z Hao, F X Hu, Z B Yu. et al.. Multicaloric and coupled-caloric effects. Chinese Physics B, 2020, 29(4): 047504
https://doi.org/10.1088/1674-1056/ab7da7
50 V K Pecharsky, K A Jr Gschneidner. Phase relationships and crystallography in the pseudobinary system Gd5Si4-Gd5Ge4. Journal of Alloys and Compounds, 1997, 260(1–2): 98–106
https://doi.org/10.1016/S0925-8388(97)00143-6
51 F X Hu, J Gao, X L Qian. et al.. Magnetocaloric effect in itinerant electron metamagnetic systems La(Fe1–xCox)11.9Si1.1. Journal of Applied Physics, 2005, 97(10): 10M303
https://doi.org/10.1063/1.1847071
52 H Wada, S Matsuo, A Mitsuda. Pressure dependence of magnetic entropy change and magnetic transition in MnAs1–xSbx. Physical Review B: Condensed Matter and Materials Physics, 2009, 79(9): 092407
https://doi.org/10.1103/PhysRevB.79.092407
53 E Liu, W Wang, L Feng. et al.. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets. Nature Communications, 2012, 3(1): 873
https://doi.org/10.1038/ncomms1868
54 Y Y Zhao, F X Hu, L F Bao. et al.. Giant negative thermal expansion in bonded MnCoGe-based compounds with Ni2In-type hexagonal structure. Journal of the American Chemical Society, 2015, 137(5): 1746–1749
https://doi.org/10.1021/ja510693a
55 V Johnson. Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides. Inorganic Chemistry, 1975, 14(5): 1117–1120
https://doi.org/10.1021/ic50147a032
56 S Anzai, K Ozawa. Coupled nature of magnetic and structural transition in MnNiGe under pressure. Physical Review B: Condensed Matter, 1978, 18(5): 2173–2178
https://doi.org/10.1103/PhysRevB.18.2173
57 J Łażewski, P Piekarz, J Tobola. et al.. Phonon mechanism of the magnetostructural phase transition in MnAs. Physical Review Letters, 2010, 104(14): 147205
https://doi.org/10.1103/PhysRevLett.104.147205
58 L Jia, G J Liu, J R Sun. et al.. Entropy changes associated with the first-order magnetic transition in LaFe13–xSix. Journal of Applied Physics, 2006, 100(12): 123904
https://doi.org/10.1063/1.2404468
59 M E Gruner, W Keune, B Roldan Cuenya. et al.. Element-resolved thermodynamics of magnetocaloric LaFe13–xSix. Physical Review Letters, 2015, 114(5): 057202
https://doi.org/10.1103/PhysRevLett.114.057202
60 J Landers, S Salamon, W Keune. et al.. Determining the vibrational entropy change in the giant magnetocaloric material LaFe11.6Si1.4 by nuclear resonant inelastic X-ray scattering. Physical Review. B, 2018, 98(2): 024417
https://doi.org/10.1103/PhysRevB.98.024417
61 L F Bao, F X Hu, R R Wu. et al.. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1–xAlx compounds. Journal of Physics. D, Applied Physics, 2014, 47(5): 055003
https://doi.org/10.1088/0022-3727/47/5/055003
62 B Li, W J Ren, Q Zhang. et al.. Magnetostructural coupling and magnetocaloric effect in Ni-Mn-In. Applied Physics Letters, 2009, 95(17): 172506
https://doi.org/10.1063/1.3257381
63 P J von Ranke, N A de Oliveira, C Mello. et al.. Analytical model to understand the colossal magnetocaloric effect. Physical Review B: Condensed Matter and Materials Physics, 2005, 71(5): 054410
https://doi.org/10.1103/PhysRevB.71.054410
64 J Hao, F Hu, J T Wang. et al.. Large enhancement of magnetocaloric and barocaloric effects by hydrostatic pressure in La(Fe0.92Co0.08)11.9Si1.1 with a NaZn13-type structure. Chemistry of Materials, 2020, 32(5): 1807–1818
https://doi.org/10.1021/acs.chemmater.9b03915
65 J Z Hao, F X Hu, Z B Yu. et al.. The sign of lattice and spin entropy change in the giant magnetocaloric materials with negative lattice expansions. Journal of Magnetism and Magnetic Materials, 2020, 512: 166983
https://doi.org/10.1016/j.jmmm.2020.166983
66 K A Jr Gschneidner, Y Mudryk, V K Pecharsky. On the nature of the magnetocaloric effect of the first-order magnetostructural transition. Scripta Materialia, 2012, 67(6): 572–577
https://doi.org/10.1016/j.scriptamat.2011.12.042
67 V K Pecharsky, K A Jr Gschneidner. Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ~20 to ~290 K. Applied Physics Letters, 1997, 70(24): 3299–3301
https://doi.org/10.1063/1.119206
68 V K Pecharsky, A O Pecharsky, K A Jr Gschneidner. Uncovering the structure-property relationships in R5(SixGe4–x) intermetallic phases. Journal of Alloys and Compounds, 2002, 344(1–2): 362–368
https://doi.org/10.1016/S0925-8388(02)00386-9
69 J Z Hao, F X Hu, H B Zhou. et al.. Large enhancement of magnetocaloric effect driven by hydrostatic pressure in HoCuSi compound. Scripta Materialia, 2020, 186: 84–88
https://doi.org/10.1016/j.scriptamat.2020.04.019
70 A Oleś, R Duraj, M Kolenda. et al.. Magnetic properties of DyCuSi and HoCuSi studied by neutron diffraction and magnetic measurements. Journal of Alloys and Compounds, 2004, 363(1−2): 63–67
https://doi.org/10.1016/S0925-8388(03)00481-X
71 Y Y Gong, D H Wang, Q Q Cao. et al.. Electric field control of the magnetocaloric effect. Advanced Materials, 2015, 27(5): 801–805
https://doi.org/10.1002/adma.201404725
72 J Liu, T Gottschall, K P Skokov. et al.. Giant magnetocaloric effect driven by structural transitions. Nature Materials, 2012, 11(7): 620–626
https://doi.org/10.1038/nmat3334
73 K Qiao, F Hu, Y Liu. et al.. Novel reduction of hysteresis loss controlled by strain memory effect in FeRh/PMN-PT heterostructures. Nano Energy, 2019, 59: 285–294
https://doi.org/10.1016/j.nanoen.2019.02.044
74 H Zhang, A Armstrong, P Müllner. Effects of surface modifications on the fatigue life of unconstrained Ni-Mn-Ga single crystals in a rotating magnetic field. Acta Materialia, 2018, 155: 175–186
https://doi.org/10.1016/j.actamat.2018.05.070
75 L Mañosa, D Gonzalez-Alonso, A Planes. et al.. Giant solid-state barocaloric effect in the Ni-Mn-In magnetic shape-memory alloy. Nature Materials, 2010, 9(6): 478–481
https://doi.org/10.1038/nmat2731
76 A O Pecharsky, K A Jr Gschneidner, V K Pecharsky. The giant magnetocaloric effect between 190 and 300 K in the Gd5SixGe4–x alloys for 1.4 ≤ x≤ 2.2. Journal of Magnetism and Magnetic Materials, 2003, 267(1): 60–68
https://doi.org/10.1016/S0304-8853(03)00305-6
77 E Stern-Taulats, A Planes, P Lloveras. et al.. Barocaloric and magnetocaloric effects in Fe49Rh51. Physical Review B: Condensed Matter and Materials Physics, 2014, 89(21): 214105
https://doi.org/10.1103/PhysRevB.89.214105
78 S A Nikitin, G Myalikgulyev, M P Annaorazov. et al.. Giant elastocaloric effect in FeRh alloy. Physics Letters. [Part A], 1992, 171(3−4): 234–236
https://doi.org/10.1016/0375-9601(92)90432-L
79 A Biswas, S Chandra, M H Phan. et al.. Magnetocaloric properties of nanocrystalline LaMnO3: Enhancement of refrigerant capacity and relative cooling power. Journal of Alloys and Compounds, 2012, 545: 157–161
https://doi.org/10.1016/j.jallcom.2012.08.001
80 K Qiao, J Wang, F Hu. et al.. Regulation of phase transition and magnetocaloric effect by ferroelectric domains in FeRh/PMN-PT heterojunctions. Acta Materialia, 2020, 191: 51–59
https://doi.org/10.1016/j.actamat.2020.03.028
81 V Provenzano, A J Shapiro, R D Shull. Reduction of hysteresis losses in the magnetic refrigerant Gd5Ge2Si2 by the addition of iron. Nature, 2004, 429(6994): 853–857
https://doi.org/10.1038/nature02657
82 J Lyubina, R Schäfer, N Martin. et al.. Novel design of La(Fe,Si)13 alloys towards high magnetic refrigeration performance. Advanced Materials, 2010, 22(33): 3735–3739
https://doi.org/10.1002/adma.201000177
83 E Stern-Taulats, T Castan, A Planes. et al.. Giant multicaloric response of bulk Fe49Rh51. Physical Review. B, 2017, 95(10): 104424
https://doi.org/10.1103/PhysRevB.95.104424
84 J Kübler, A R William, C B Sommers. Formation and coupling of magnetic moments in Heusler alloys. Physical Review B: Condensed Matter, 1983, 28(4): 1745–1755
https://doi.org/10.1103/PhysRevB.28.1745
85 V K Sharma, M K Chattopadhyay, S B Roy. The effect of external pressure on the magnetocaloric effect of Ni-Mn-In alloy. Journal of Physics Condensed Matter, 2011, 23(36): 366001
https://doi.org/10.1088/0953-8984/23/36/366001
86 F X Liang, J Z Hao, F R Shen. et al.. Experimental study on coupled caloric effect driven by dual fields in metamagnetic Heusler alloy Ni50Mn35In15. APL Materials, 2019, 7(5): 051102
https://doi.org/10.1063/1.5090599
87 K Qiao, J Wang, S Zuo. et al.. Enhanced performance of ΔTad upon frequent alternating magnetic fields in FeRh alloys by introducing second phases. ACS Applied Materials & Interfaces, 2022, 14(16): 18293–18301
https://doi.org/10.1021/acsami.1c23313
88 A M Aliev, A B Batdalov, L N Khanov. et al.. Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3. Applied Physics Letters, 2016, 109(20): 202407
https://doi.org/10.1063/1.4968241
89 V I Zverev, A M Saletsky, R R Gimaev. et al.. Influence of structural defects on the magnetocaloric effect in the vicinity of the first order magnetic transition in Fe50.4Rh49.6. Applied Physics Letters, 2016, 108(19): 192405
https://doi.org/10.1063/1.4949355
90 B Khaykovich, E Zeldov, D Majer. et al.. Vortex-lattice phase transitions in Bi2Sr2CaCu2O8 crystals with different oxygen stoichiometry. Physical Review Letters, 1996, 76(14): 2555–2558
https://doi.org/10.1103/PhysRevLett.76.2555
91 K Chang, W Feng, L Q Chen. Effect of second-phase particle morphology on grain growth kinetics. Acta Materialia, 2009, 57(17): 5229–5236
https://doi.org/10.1016/j.actamat.2009.07.025
92 X Tang, J Li, H Sepehri-Amin. et al.. Improved coercivity and squareness in bulk hot-deformed Nd-Fe-B magnets by two-step eutectic grain boundary diffusion process. Acta Materialia, 2021, 203: 116479
https://doi.org/10.1016/j.actamat.2020.11.021
93 A M Aliev, A B Batdalov, L N Khanov. et al.. Magnetocaloric effect in some magnetic materials in alternating magnetic fields up to 22 Hz. Journal of Alloys and Compounds, 2016, 676: 601–605
https://doi.org/10.1016/j.jallcom.2016.03.238
94 J Seo, R D McGillicuddy, A H Slavney. et al.. Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal-halide perovskites. Nature Communications, 2022, 13(1): 2536
https://doi.org/10.1038/s41467-022-29800-9
95 J Li, M Barrio, D J Dunstan. et al.. Colossal reversible barocaloric effects in layered hybrid perovskite (C10H21NH3)2MnCl4 under low pressure near room temperature. Advanced Functional Materials, 2021, 31(46): 2105154
https://doi.org/10.1002/adfm.202105154
96 A Aznar, P Lloveras, M Romanini. et al.. Giant barocaloric effects over a wide temperature range in superionic conductor AgI. Nature Communications, 2017, 8(1): 1851
https://doi.org/10.1038/s41467-017-01898-2
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed