Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (1): 102-122   https://doi.org/10.1007/s11708-023-0861-0
  本期目录
A systemic review of hydrogen supply chain in energy transition
Haoming MA, Zhe SUN, Zhenqian XUE, Chi ZHANG, Zhangxin CHEN()
Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
 全文: PDF(2434 KB)   HTML
Abstract

Targeting the net-zero emission (NZE) by 2050, the hydrogen industry is drastically developing in recent years. However, the technologies of hydrogen upstream production, midstream transportation and storage, and downstream utilization are facing obstacles. In this paper, the development of hydrogen industry from the production, transportation and storage, and sustainable economic development perspectives were reviewed. The current challenges and future outlooks were summarized consequently. In the upstream, blue hydrogen is dominating the current hydrogen supply, and an implementation of carbon capture and sequestration (CCS) can raise its cost by 30%. To achieve an economic feasibility, green hydrogen needs to reduce its cost by 75% to approximately 2 $/kg at the large scale. The research progress in the midterm sector is still in a preliminary stage, where experimental and theoretical investigations need to be conducted in addressing the impact of embrittlement, contamination, and flammability so that they could provide a solid support for material selection and large-scale feasibility studies. In the downstream utilization, blue hydrogen will be used in producing value-added chemicals in the short-term. Over the long-term, green hydrogen will dominate the market owing to its high energy intensity and zero carbon intensity which provides a promising option for energy storage. Technologies in the hydrogen industry require a comprehensive understanding of their economic and environmental benefits over the whole life cycle in supporting operators and policymakers.

Key wordshydrogen production    hydrogen transportation and storage    hydrogen economy    carbon capture and sequestration (CCS)    technology assessment
收稿日期: 2022-10-16      出版日期: 2023-03-29
Corresponding Author(s): Zhangxin CHEN   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(1): 102-122.
Haoming MA, Zhe SUN, Zhenqian XUE, Chi ZHANG, Zhangxin CHEN. A systemic review of hydrogen supply chain in energy transition. Front. Energy, 2023, 17(1): 102-122.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0861-0
https://academic.hep.com.cn/fie/CN/Y2023/V17/I1/102
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
1 Energy Agency International. Global Energy Review 2021. Technical Report, IEA, 2021
2 Energy Agency International. Net Zero by 2050. Technical Report, IEA, 2021
3 Energy Agency International. Global Hydrogen Review 2021. Technical Report, IEA, 2021
4 Petroleum British. BP Energy Outlook 2022 edition. Technical Report, British Institute of Energy Economics, 2022
5 A M Abdalla, S Hossain, O B Nisfindy. et al.. Hydrogen production, storage, transportation and key challenges with applications: a review. Energy Conversion and Management, 2018, 165: 602–627
https://doi.org/10.1016/j.enconman.2018.03.088
6 I Dincer. Green methods for hydrogen production. International Journal of Hydrogen Energy, 2012, 37(2): 1954–1971
https://doi.org/10.1016/j.ijhydene.2011.03.173
7 T Longden, F J Beck, F Jotzo. et al.. ‘Clean’ hydrogen? – Comparing the emissions and costs of fossil fuel versus renewable electricity based hydrogen. Applied Energy, 2022, 306: 118145
https://doi.org/10.1016/j.apenergy.2021.118145
8 M Hermesmann, T E Müller. Green, turquoise, blue, or grey? Environmentally friendly hydrogen production in transforming energy systems. Progress in Energy and Combustion Science, 2022, 90: 100996
https://doi.org/10.1016/j.pecs.2022.100996
9 C Bauer, K Treyer, C Antonini. et al.. On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 2021, 6(1): 66–75
https://doi.org/10.1039/D1SE01508G
10 M van der Spek, C Banet, C Bauer. et al.. Perspective on the hydrogen economy as a pathway to reach net-zero CO2 emissions in Europe. Energy & Environmental Science, 2022, 15(3): 1034–1077
https://doi.org/10.1039/D1EE02118D
11 R W Howarth, M Z Jacobson. How green is blue hydrogen?. Energy Science & Engineering, 2021, 9(10): 1676–1687
https://doi.org/10.1002/ese3.956
12 Y Yan, D Thanganadar, P T Clough. et al.. Process simulations of blue hydrogen production by upgraded sorption enhanced steam methane reforming (SE-SMR) processes. Energy Conversion and Management, 2020, 222: 113144
https://doi.org/10.1016/j.enconman.2020.113144
13 H C Lau. The color of energy: the competition to be the energy of the future. In: International Petroleum Technology Conference, 2021
14 M Yu, K Wang, H Vredenburg. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. International Journal of Hydrogen Energy, 2021, 46(41): 21261–21273
https://doi.org/10.1016/j.ijhydene.2021.04.016
15 C Ehlig-EconomidesD G Hatzignatiou. Blue hydrogen economy—A new look at an old idea. In: SPE Annual Technical Conference and Exhibition, Dubai, the UAE, 2021
16 C Bauer, K Treyer, C Antonini. et al.. On the climate impacts of blue hydrogen production. Sustainable Energy & Fuels, 2021, 6(1): 66–75
https://doi.org/10.1039/D1SE01508G
17 M Newborough, G Cooley. Developments in the global hydrogen market: the spectrum of hydrogen colours. Fuel Cells Bulletin, 2020, 2020(11): 16–22
https://doi.org/10.1016/S1464-2859(20)30546-0
18 L Mosca, J A Medrano Jimenez, S A Wassie. et al.. Process design for green hydrogen production. International Journal of Hydrogen Energy, 2020, 45(12): 7266–7277
https://doi.org/10.1016/j.ijhydene.2019.08.206
19 G Palmer, A Roberts, A Hoadley. et al.. Life-cycle greenhouse gas emissions and net energy assessment of large-scale hydrogen production via electrolysis and solar PV. Energy & Environmental Science, 2021, 14(10): 5113–5131
https://doi.org/10.1039/D1EE01288F
20 L Jin, A Monforti Ferrario, V Cigolotti. et al.. Evaluation of the impact of green hydrogen blending scenarios in the Italian gas network: Optimal design and dynamic simulation of operation strategies. Renewable and Sustainable Energy Transition, 2022, 2: 100022
https://doi.org/10.1016/j.rset.2022.100022
21 A Godula-JopekW JehleJ Wellnitz. Hydrogen Storage Technologies: New Materials, Transport, and Infrastructure. Hoboken: John Wiley & Sons, 2012
22 B Zohuri. Hydrogen Energy: Challenges and Solutions for a Cleaner Future. Cham: Springer, 2019
23 A M Adris, B B Pruden, C J Lim. et al.. On the reported attempts to radically improve the performance of the steam methane reforming reactor. Canadian Journal of Chemical Engineering, 1996, 74(2): 177–186
https://doi.org/10.1002/cjce.5450740202
24 E L G Oliveira, C A Grande, A E Rodrigues. Effect of catalyst activity in SMR-SERP for hydrogen production: Commercial vs. large-pore catalyst. Chemical Engineering Science, 2011, 66(3): 342–354
https://doi.org/10.1016/j.ces.2010.10.030
25 G Collodi, G Azzaro, N Ferrari. et al.. Techno-economic evaluation of deploying CCS in SMR based merchant H2 poduction with NG as feedstock and fuel. Energy Procedia, 2017, 114: 2690–2712
https://doi.org/10.1016/j.egypro.2017.03.1533
26 V Stenberg, M Rydén, T Mattisson. et al.. Exploring novel hydrogen production processes by integration of steam methane reforming with chemical-looping combustion (CLC-SMR) and oxygen carrier aided combustion (OCAC-SMR). International Journal of Greenhouse Gas Control, 2018, 74: 28–39
https://doi.org/10.1016/j.ijggc.2018.01.008
27 Y Yan, V Manovic, E J Anthony. et al.. Techno-economic analysis of low-carbon hydrogen production by sorption enhanced steam methane reforming (SE-SMR) processes. Energy Conversion and Management, 2020, 226: 113530
https://doi.org/10.1016/j.enconman.2020.113530
28 P Nikolaidis, A Poullikkas. A comparative overview of hydrogen production processes. Renewable & Sustainable Energy Reviews, 2017, 67: 597–611
https://doi.org/10.1016/j.rser.2016.09.044
29 M van der Spek, T Fout, M Garcia. et al.. Uncertainty analysis in the techno-economic assessment of CO2 capture and storage technologies. Critical review and guidelines for use. International Journal of Greenhouse Gas Control, 2020, 100: 103113
https://doi.org/10.1016/j.ijggc.2020.103113
30 R Carapellucci, L Giordano. Steam, dry and autothermal methane reforming for hydrogen production: A thermodynamic equilibrium analysis. Journal of Power Sources, 2020, 469: 228391
https://doi.org/10.1016/j.jpowsour.2020.228391
31 H L Chen, H M Lee, S H Chen. et al.. Review of plasma catalysis on hydrocarbon reforming for hydrogen production-interaction, integration, and prospects. Applied Catalysis B: Environmental, 2008, 85(1–2): 1–9
https://doi.org/10.1016/j.apcatb.2008.06.021
32 T L LeValley, A R Richard, M Fan. The progress in water gas shift and steam reforming hydrogen production technologies—A review. International Journal of Hydrogen Energy, 2014, 39(30): 16983–17000
https://doi.org/10.1016/j.ijhydene.2014.08.041
33 C Liu, J Ye, J Jiang. et al.. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane. ChemCatChem, 2011, 3(3): 529–541
https://doi.org/10.1002/cctc.201000358
34 J Yoo, Y Bang, S J Han. et al.. Hydrogen production by tri-reforming of methane over nickel–alumina aerogel catalyst. Journal of Molecular Catalysis A Chemical, 2015, 410: 74–80
https://doi.org/10.1016/j.molcata.2015.09.008
35 A Ersöz. Investigation of hydrocarbon reforming processes for micro-cogeneration systems. International Journal of Hydrogen Energy, 2008, 33(23): 7084–7094
https://doi.org/10.1016/j.ijhydene.2008.07.062
36 A ScipioniA ManzardoJ Ren. Hydrogen Economy: Supply Chain, Life Cycle Analysis and Energy Transition for Sustainability. Academic Press, 2017
37 M Steinberg, H C Cheng. Modern and prospective technologies for hydrogen production from fossil fuels. International Journal of Hydrogen Energy, 1989, 14(11): 797–820
https://doi.org/10.1016/0360-3199(89)90018-9
38 O Faye, J Szpunar, U Eduok. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. International Journal of Hydrogen Energy, 2022, 47(29): 13771–13802
https://doi.org/10.1016/j.ijhydene.2022.02.112
39 J D Holladay, J Hu, D L King. et al.. An overview of hydrogen production technologies. Catalysis Today, 2009, 139(4): 244–260
https://doi.org/10.1016/j.cattod.2008.08.039
40 H Dai, H Zhu. Enhancement of partial oxidation reformer by the free-section addition for hydrogen production. Renewable Energy, 2022, 190: 425–433
https://doi.org/10.1016/j.renene.2022.03.124
41 J Caudal, B Fiorina, B Labégorre. et al.. Modeling interactions between chemistry and turbulence for simulations of partial oxidation processes. Fuel Processing Technology, 2015, 134: 231–242
https://doi.org/10.1016/j.fuproc.2015.01.040
42 A F Jahromi, E Ruiz-López, F Dorado. et al.. Electrochemical promotion of ethanol partial oxidation and reforming reactions for hydrogen production. Renewable Energy, 2022, 183: 515–523
https://doi.org/10.1016/j.renene.2021.11.041
43 J R Bartels, M B Pate, N K Olson. An economic survey of hydrogen production from conventional and alternative energy sources. International Journal of Hydrogen Energy, 2010, 35(16): 8371–8384
https://doi.org/10.1016/j.ijhydene.2010.04.035
44 Falco L. Marrelli L DeG Laquaniello. Membrane Reactors for Hydrogen Production Processes. London: Springer, 2011
45 J R Lattner, M P Harold. Comparison of conventional and membrane reactor fuel processors for hydrocarbon-based PEM fuel cell systems. International Journal of Hydrogen Energy, 2004, 29(4): 393–417
https://doi.org/10.1016/j.ijhydene.2003.10.013
46 J Kim, J Park, M Qi. et al.. Process integration of an autothermal reforming hydrogen production system with cryogenic air separation and carbon dioxide capture using liquefied natural gas cold energy. Industrial & Engineering Chemistry Research, 2021, 60(19): 7257–7274
https://doi.org/10.1021/acs.iecr.0c06265
47 K Damen, M van Troost, A Faaij. et al.. A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies. Progress in Energy and Combustion Science, 2006, 32(2): 215–246
https://doi.org/10.1016/j.pecs.2005.11.005
48 A Demirbaş. Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Conversion and Management, 2001, 42(11): 1357–1378
https://doi.org/10.1016/S0196-8904(00)00137-0
49 V Krishnamoorthy, S V Pisupati. A critical review of mineral matter related issues during gasification of coal in fixed, fluidized, and entrained flow gasifiers. Energies, 2015, 8(9): 10430–10463
https://doi.org/10.3390/en80910430
50 L Jiang, Z Chen, S M Farouq Ali. Thermal-hydro-chemical-mechanical alteration of coal pores in underground coal gasification. Fuel, 2020, 262: 116543
https://doi.org/10.1016/j.fuel.2019.116543
51 H Ma, S Chen, D Xue. et al.. Outlook for the coal industry and new coal production technologies. Advances in Geo-Energy Research, 2021, 5(2): 119–120
https://doi.org/10.46690/ager.2021.02.01
52 L Jiang, D Xue, Z Wei. et al.. Coal decarbonization: a state-of-the-art review of enhanced hydrogen production in underground coal gasification. Energy Reviews, 2022, 1(1): 100004
https://doi.org/10.1016/j.enrev.2022.100004
53 G Perkins. Underground coal gasification—Part I: Field demonstrations and process performance. Progress in Energy and Combustion Science, 2018, 67: 158–187
https://doi.org/10.1016/j.pecs.2018.02.004
54 L Weger, A Abánades, T Butler. Methane cracking as a bridge technology to the hydrogen economy. International Journal of Hydrogen Energy, 2017, 42(1): 720–731
https://doi.org/10.1016/j.ijhydene.2016.11.029
55 S Schneider, S Bajohr, F Graf. et al.. State of the art of hydrogen production via pyrolysis of natural gas. ChemBioEng Reviews, 2020, 7(5): 150–158
https://doi.org/10.1002/cben.202000014
56 M Plevan, T Geißler, A Abánades. et al.. Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis. International Journal of Hydrogen Energy, 2015, 40(25): 8020–8033
https://doi.org/10.1016/j.ijhydene.2015.04.062
57 T Geißler, A Abánades, A Heinzel. et al.. Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chemical Engineering Journal, 2016, 299: 192–200
https://doi.org/10.1016/j.cej.2016.04.066
58 N Sánchez-Bastardo, R Schlögl, H Ruland. Methane pyrolysis for CO2–free H2 production: A green process to overcome renewable energies unsteadiness. Chemieingenieurtechnik (Weinheim), 2020, 92(10): 1596–1609
https://doi.org/10.1002/cite.202000029
59 U P M Ashik, W M A Wan Daud, H F Abbas. Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane—A review. Renewable & Sustainable Energy Reviews, 2015, 44: 221–256
https://doi.org/10.1016/j.rser.2014.12.025
60 A M Amin, E Croiset, W Epling. Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 2011, 36(4): 2904–2935
https://doi.org/10.1016/j.ijhydene.2010.11.035
61 R A DagleV DagleM D Bearden, et al.. An Overview of Natural Gas Conversion Technologies for Co-production of Hydrogen and Value-added Solid Carbon Products. Technical Report, USDOE Office of Energy Efficiency and Renewable Energy, 2017
62 C Guéret, M Daroux, F Billaud. Methane pyrolysis: thermodynamics. Chemical Engineering Science, 1997, 52(5): 815–827
https://doi.org/10.1016/S0009-2509(96)00444-7
63 N Muradov, T Veziroǧlu. From hydrocarbon to hydrogen–carbon to hydrogen economy. International Journal of Hydrogen Energy, 2005, 30(3): 225–237
https://doi.org/10.1016/j.ijhydene.2004.03.033
64 M Gautier, V Rohani, L Fulcheri. Direct decarbonization of methane by thermal plasma for the production of hydrogen and high value-added carbon black. International Journal of Hydrogen Energy, 2017, 42(47): 28140–28156
https://doi.org/10.1016/j.ijhydene.2017.09.021
65 J A Bakken, R Jensen, B Monsen. et al.. Thermal plasma process development in Norway. Pure and Applied Chemistry, 1998, 70(6): 1223–1228
https://doi.org/10.1351/pac199870061223
66 B Gaudernack, S Lynum. Hydrogen from natural gas without release of CO2 to the atmosphere. International Journal of Hydrogen Energy, 1998, 23(12): 1087–1093
https://doi.org/10.1016/S0360-3199(98)00004-4
67 M Pudukudy, Z Yaakob, M S Takriff. Methane decomposition over unsupported mesoporous nickel ferrites: Effect of reaction temperature on the catalytic activity and properties of the produced nanocarbon. RSC Advances, 2016, 6(72): 68081–68091
https://doi.org/10.1039/C6RA14660K
68 K K Lee, G Y Han, K J Yoon. et al.. Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catalysis Today, 2004, 93–95: 81–86
https://doi.org/10.1016/j.cattod.2004.06.080
69 A M Dunker, S Kumar, P A Mulawa. Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor—Effects of catalyst, temperature, and residence time. International Journal of Hydrogen Energy, 2006, 31(4): 473–484
https://doi.org/10.1016/j.ijhydene.2005.04.023
70 T Keipi, H Tolvanen, J Konttinen. Economic analysis of hydrogen production by methane thermal decomposition: comparison to competing technologies. Energy Conversion and Management, 2018, 159: 264–273
https://doi.org/10.1016/j.enconman.2017.12.063
71 J M Gatica, G A Cifredo, G Blanco. et al.. Unveiling the source of activity of carbon integral honeycomb monoliths in the catalytic methane decomposition reaction. Catalysis Today, 2015, 249: 86–93
https://doi.org/10.1016/j.cattod.2014.12.015
72 J M Gatica, D M Gómez, S Harti. et al.. Monolithic honeycomb design applied to carbon materials for catalytic methane decomposition. Applied Catalysis A, General, 2013, 458: 21–27
https://doi.org/10.1016/j.apcata.2013.03.016
73 M Serban, M A Lewis, C L Marshall. et al.. Hydrogen production by direct contact pyrolysis of natural gas. Energy & Fuels, 2003, 17(3): 705–713
https://doi.org/10.1021/ef020271q
74 T Geißler, M Plevan, A Abánades. et al.. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. International Journal of Hydrogen Energy, 2015, 40(41): 14134–14146
https://doi.org/10.1016/j.ijhydene.2015.08.102
75 D Kang, N Rahimi, M J Gordon. et al.. Catalytic methane pyrolysis in molten MnCl2-KCl. Applied Catalysis B: Environmental, 2019, 254: 659–666
https://doi.org/10.1016/j.apcatb.2019.05.026
76 C Palmer, M Tarazkar, H H Kristoffersen. et al.. Methane pyrolysis with a molten Cu–Bi alloy catalyst. ACS Catalysis, 2019, 9(9): 8337–8345
https://doi.org/10.1021/acscatal.9b01833
77 D C Upham, V Agarwal, A Khechfe. et al.. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science, 2017, 358(6365): 917–921
https://doi.org/10.1126/science.aao5023
78 M Pudukudy, Z Yaakob, Q Jia. et al.. Catalytic decomposition of undiluted methane into hydrogen and carbon nanotubes over Pt promoted Ni/CeO2 catalysts. New Journal of Chemistry, 2018, 42(18): 14843–14856
https://doi.org/10.1039/C8NJ02842G
79 N Bayat, M Rezaei, F Meshkani. COx-free hydrogen and carbon nanofibers production by methane decomposition over nickel-alumina catalysts. Korean Journal of Chemical Engineering, 2016, 33(2): 490–499
https://doi.org/10.1007/s11814-015-0183-y
80 N Bayat, M Rezaei, F Meshkani. Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni–Pd/Al2O3 catalyst. International Journal of Hydrogen Energy, 2016, 41(12): 5494–5503
https://doi.org/10.1016/j.ijhydene.2016.01.134
81 A H Fakeeha, A A Ibrahim, W U Khan. et al.. Hydrogen production via catalytic methane decomposition over alumina supported iron catalyst. Arabian Journal of Chemistry, 2018, 11(3): 405–414
https://doi.org/10.1016/j.arabjc.2016.06.012
82 L B Avdeeva, T V Reshetenko, Z R Ismagilov. et al.. Iron-containing catalysts of methane decomposition: Accumulation of filamentous carbon. Applied Catalysis A, General, 2002, 228(1–2): 53–63
https://doi.org/10.1016/S0926-860X(01)00959-0
83 D Ayillath Kutteri, I W Wang, A Samanta. et al.. Methane decomposition to tip and base grown carbon nanotubes and COx-free H2 over mono-and bimetallic 3d transition metal catalysts. Catalysis Science & Technology, 2018, 8(3): 858–869
https://doi.org/10.1039/C7CY01927K
84 R R Silva, H A Oliveira, A C P F Guarino. et al.. Effect of support on methane decomposition for hydrogen production over cobalt catalysts. International Journal of Hydrogen Energy, 2016, 41(16): 6763–6772
https://doi.org/10.1016/j.ijhydene.2016.02.101
85 J Pinilla, I Suelves, M Lázaro. et al.. Influence on hydrogen production of the minor components of natural gas during its decomposition using carbonaceous catalysts. Journal of Power Sources, 2009, 192(1): 100–106
https://doi.org/10.1016/j.jpowsour.2008.12.074
86 J Zhang, X Li, H Chen. et al.. Hydrogen production by catalytic methane decomposition: Carbon materials as catalysts or catalyst supports. International Journal of Hydrogen Energy, 2017, 42(31): 19755–19775
https://doi.org/10.1016/j.ijhydene.2017.06.197
87 B Fidalgo, N Muradov, J Menéndez. Effect of H2S on carbon-catalyzed methane decomposition and CO2 reforming reactions. International Journal of Hydrogen Energy, 2012, 37(19): 14187–14194
https://doi.org/10.1016/j.ijhydene.2012.07.090
88 R Guil-Lopez, J Botas, J Fierro. et al.. Comparison of metal and carbon catalysts for hydrogen production by methane decomposition. Applied Catalysis A, General, 2011, 396(1−2): 40–51
https://doi.org/10.1016/j.apcata.2011.01.036
89 A Abánades, C Rubbia, D Salmieri. Thermal cracking of methane into Hydrogen for a CO2-free utilization of natural gas. International Journal of Hydrogen Energy, 2013, 38(20): 8491–8496
https://doi.org/10.1016/j.ijhydene.2012.08.138
90 M Ermakova, D Y Ermakov. Ni/SiO2 and Fe/SiO2 catalysts for production of hydrogen and filamentous carbon via methane decomposition. Catalysis Today, 2002, 77(3): 225–235
https://doi.org/10.1016/S0920-5861(02)00248-1
91 M Ouyang, P Boldrin, R C Maher. et al.. A mechanistic study of the interactions between methane and nickel supported on doped ceria. Applied Catalysis B: Environmental, 2019, 248: 332–340
https://doi.org/10.1016/j.apcatb.2019.02.038
92 N Bayat, M Rezaei, F Meshkani. Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber. International Journal of Hydrogen Energy, 2016, 41(3): 1574–1584
https://doi.org/10.1016/j.ijhydene.2015.10.053
93 A Rastegarpanah, M Rezaei, F Meshkani. et al.. Influence of group VIB metals on activity of the Ni/MgO catalysts for methane decomposition. Applied Catalysis B: Environmental, 2019, 248: 515–525
https://doi.org/10.1016/j.apcatb.2019.01.067
94 N Bayat, F Meshkani, M Rezaei. Thermocatalytic decomposition of methane to COx-free hydrogen and carbon over Ni–Fe–Cu/Al2O3 catalysts. International Journal of Hydrogen Energy, 2016, 41(30): 13039–13049
https://doi.org/10.1016/j.ijhydene.2016.05.230
95 A S Al-Fatesh, A H Fakeeha, A A Ibrahim. et al.. Decomposition of methane over alumina supported Fe and Ni−Fe bimetallic catalyst: Effect of preparation procedure and calcination temperature. Journal of Saudi Chemical Society, 2018, 22(2): 239–247
https://doi.org/10.1016/j.jscs.2016.05.001
96 R Moliner, I Suelves, M Lázaro. et al.. Thermocatalytic decomposition of methane over activated carbons: Influence of textural properties and surface chemistry. International Journal of Hydrogen Energy, 2005, 30(3): 293–300
https://doi.org/10.1016/j.ijhydene.2004.03.035
97 E K Lee, S Y Lee, G Y Han. et al.. Catalytic decomposition of methane over carbon blacks for CO2-free hydrogen production. Carbon, 2004, 42(12−13): 2641–2648
https://doi.org/10.1016/j.carbon.2004.06.003
98 S Takenaka, H Ogihara, I Yamanaka. et al.. Decomposition of methane over supported-Ni catalysts: Effects of the supports on the catalytic lifetime. Applied Catalysis A, General, 2001, 217(1−2): 101–110
https://doi.org/10.1016/S0926-860X(01)00593-2
99 J Zhang, X Li, W Xie. et al.. K2CO3-promoted methane pyrolysis on nickel/coal-char hybrids. Journal of Analytical and Applied Pyrolysis, 2018, 136: 53–61
https://doi.org/10.1016/j.jaap.2018.11.001
100 B Parkinson, M Tabatabaei, D C Upham. et al.. Hydrogen production using methane: techno-economics of decarbonizing fuels and chemicals. International Journal of Hydrogen Energy, 2018, 43(5): 2540–2555
https://doi.org/10.1016/j.ijhydene.2017.12.081
101 A Abánades, E Ruiz, E M Ferruelo. et al.. Experimental analysis of direct thermal methane cracking. International Journal of Hydrogen Energy, 2011, 36(20): 12877–12886
https://doi.org/10.1016/j.ijhydene.2011.07.081
102 A Abánades, R K Rathnam, T Geißler. et al.. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen. International Journal of Hydrogen Energy, 2016, 41(19): 8159–8167
https://doi.org/10.1016/j.ijhydene.2015.11.164
103 L Zhou, L R Enakonda, S Li. et al.. Iron ore catalysts for methane decomposition to make COx free hydrogen and carbon nano material. Journal of the Taiwan Institute of Chemical Engineers, 2018, 87: 54–63
https://doi.org/10.1016/j.jtice.2018.03.008
104 M Pudukudy, Z Yaakob. Methane decomposition over Ni, Co and Fe based monometallic catalysts supported on sol gel derived SiO2 microflakes. Chemical Engineering Journal, 2015, 262: 1009–1021
https://doi.org/10.1016/j.cej.2014.10.077
105 M Ermakova, D Y Ermakov, G Kuvshinov. Effective catalysts for direct cracking of methane to produce hydrogen and filamentous carbon: Part I. Nickel catalysts. Applied Catalysis A, General, 2000, 201(1): 61–70
https://doi.org/10.1016/S0926-860X(00)00433-6
106 A S Al-Fatesh, A Amin, A Ibrahim. et al.. Effect of Ce and Co addition to Fe/Al2O3 for catalytic methane decomposition. Catalysts, 2016, 6(3): 40
https://doi.org/10.3390/catal6030040
107 J Wang, L Jin, Y Li. et al.. Preparation of Fe-doped carbon catalyst for methane decomposition to hydrogen. Industrial & Engineering Chemistry Research, 2017, 56(39): 11021–11027
https://doi.org/10.1021/acs.iecr.7b02394
108 L Zhou, L R Enakonda, Y Saih. et al.. Catalytic methane decomposition over Fe-Al2O3. ChemSusChem, 2016, 9(11): 1243–1248
https://doi.org/10.1002/cssc.201600310
109 A Cunha, J Órfão, J Figueiredo. Methane decomposition on Fe–Cu Raney-type catalysts. Fuel Processing Technology, 2009, 90(10): 1234–1240
https://doi.org/10.1016/j.fuproc.2009.06.004
110 I Schultz, D W Agar. Decarbonisation of fossil energy via methane pyrolysis using two reactor concepts: Fluid wall flow reactor and molten metal capillary reactor. International Journal of Hydrogen Energy, 2015, 40(35): 11422–11427
https://doi.org/10.1016/j.ijhydene.2015.03.126
111 S Postels, A Abánades, der Assen N von. et al.. Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid-metal technology. International Journal of Hydrogen Energy, 2016, 41(48): 23204–23212
https://doi.org/10.1016/j.ijhydene.2016.09.167
112 M VollP Kleinschmit. Carbon, 6. Carbon Black. In: Elvers B, eds. Ullmann’s Encyclopedia of Industrial Chemistry. Hoboken: Wiley-VCH Verlag GmbH & Co, 2000
113 G Fau, N Gascoin, P Gillard. et al.. Methane pyrolysis: literature survey and comparisons of available data for use in numerical simulations. Journal of Analytical and Applied Pyrolysis, 2013, 104: 1–9
https://doi.org/10.1016/j.jaap.2013.04.006
114 Energy Agency International. Global Energy & CO2 Status Report 2019. Technical Report, IEA, 2019
115 Energy Agency International. The Future of Hydrogen. Technical Report, IEA, 2019
116 Energy Agency International. Achieving Net Zero Heavy Industry Sectors in G7 Members. Technical Report, IEA, 2022
117 C M White, B R Strazisar, E J Granite. et al.. Separation and capture of CO2 from large stationary sources and sequestration in geological formations–coalbeds and deep saline aquifers. Journal of the Air & Waste Management Association, 2003, 53(6): 645–715
https://doi.org/10.1080/10473289.2003.10466206
118 K Riahi, E S Rubin, L Schrattenholzer. Prospects for carbon capture and sequestration technologies assuming their technological learning. Energy, 2004, 29(9−10): 1309–1318
https://doi.org/10.1016/j.energy.2004.03.089
119 O DavidsonB Metz. Special Report on Carbon Dioxide Capture and Storage. Technical Report, IPCC, 2005
120 J Middleton. et al.. Identifying geologic characteristics and operational decisions to meet global carbon sequestration goals. Energy & Environmental Science, 2020, 13(12): 5000–5016
https://doi.org/10.1039/d0ee02488k
121 A L Chaffee, G P Knowles, Z Liang. et al.. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control, 2007, 1(1): 11–18
https://doi.org/10.1016/S1750-5836(07)00031-X
122 S Bachu, D Bonijoly, J Bradshaw. et al.. CO2 storage capacity estimation: methodology and gaps. International Journal of Greenhouse Gas Control, 2007, 1(4): 43–443
https://doi.org/10.1016/S1750-5836(07)00086-2
123 J Faltinson, B Gunter. Integrated economic model CO2 capture, transport, ECBM and saline aquifer storage. Energy Procedia, 2009, 1(1): 4001–4005
https://doi.org/10.1016/j.egypro.2009.02.205
124 N MacDowell, N Florin, A Buchard. et al.. An overview of CO2 capture technologies. Energy & Environmental Science, 2010, 3(11): 1645
https://doi.org/10.1039/c004106h
125 C H Yu, C H Huang, C S Tan. A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research, 2012, 12(5): 745–769
https://doi.org/10.4209/aaqr.2012.05.0132
126 M G MorganS T McCoy. Carbon Capture and Sequestration: Removing the Legal and Regulatory Barriers. New York: Routledge, 2012
127 L Espinal, D L Poster, W Wong-Ng. et al.. Measurement, standards, and data needs for CO2 capture materials: A critical review. Environmental Science & Technology, 2013, 47(21): 11960–11975
https://doi.org/10.1021/es402622q
128 E S Rubin, C Short, G Booras. et al.. A proposed methodology for CO2 capture and storage cost estimates. International Journal of Greenhouse Gas Control, 2013, 17: 488–503
https://doi.org/10.1016/j.ijggc.2013.06.004
129 X Zhang, J L Fan, Y M Wei. Technology roadmap study on carbon capture, utilization and storage in China. Energy Policy, 2013, 59: 536–550
https://doi.org/10.1016/j.enpol.2013.04.005
130 D Y C Leung, G Caramanna, M M Maroto-Valer. An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 2014, 39: 426–443
https://doi.org/10.1016/j.rser.2014.07.093
131 W G G Allinson, Y Cinar, P R R Neal. et al.. CO2-storage capacity—Combining geology, engineering and economics. SPE Economics & Management, 2014, 6(1): 15–27
https://doi.org/10.2118/133804-PA
132 H Ma, Y Yang, Y Zhang. et al.. Optimized schemes of enhanced shale gas recovery by CO2-N2 mixtures associated with CO2 sequestration. Energy Conversion and Management, 2022, 268: 116062
https://doi.org/10.1016/j.enconman.2022.116062
133 H MaS McCoyZ Chen. Economic and engineering co-optimization of CO2 storage and enhanced oil recovery. In: Proceedings of the 16th Greenhouse Gas Control Technologies Conference, Lyon, France, 2022
134 Energy Agency International. Global Energy and CO2 Status Report 2018. Technical Report, IEA, 2018
135 CCS Institute Global. Global Status of CCS 2020. Technical Report, Global CCS Institute, 2020
136 Petroleum British. Statistical Review of World Energy 2021. Technical Report, BP, 2021
137 M Bui, C S Adjiman, A Bardow. et al.. Carbon capture and storage (CCS): The way forward. Energy & Environmental Science, 2018, 11(5): 1064–1065
https://doi.org/10.1039/C7EE02342A
138 Panel on Climate Change Intergovernmental. Future Global Climate: Scenario-based Projections and Near Term Information. Technical Report, IPCC, 2021
139 Renewable Energy Agency International. World Energy Transitions Outlook. Technical Report, IRENA, 2022
140 Renewable Energy Agency International. Hydrogen: A Renewable Energy Perspective. Technical Report, IRENA, 2019
141 C Song, Q Liu, N Ji. et al.. Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renewable & Sustainable Energy Reviews, 2018, 82: 215–231
https://doi.org/10.1016/j.rser.2017.09.040
142 X Wang, C Song. Carbon capture from flue gas and the atmosphere: A perspective. Frontiers in Energy Research, 2020, 8: 560849
https://doi.org/10.3389/fenrg.2020.560849
143 T EvansE Grynia. Carbon capture–purpose and technologies. 2020, available at website of gasliquids
144 J Sekera, A Lichtenberger. Assessing carbon capture: Public policy, science, and societal need. Biophysical Economics and Sustainability, 2020, 5(3): 14
https://doi.org/10.1007/s41247-020-00080-5
145 Y M Wei, J N Kang, L C Liu. et al.. A proposed global layout of carbon capture and storage in line with a 2  °C climate target. Nature Climate Change, 2021, 11(2): 112–118
https://doi.org/10.1038/s41558-020-00960-0
146 V Becattini, P Gabrielli, M Mazzotti. Role of carbon capture, storage, and utilization to enable a net-zero-CO2-emissions aviation sector. Industrial & Engineering Chemistry Research, 2021, 60(18): 6848–6862
https://doi.org/10.1021/acs.iecr.0c05392
147 K Zhang, H K Bokka, H C Lau. Decarbonizing the energy and industry sectors in Thailand by carbon capture and storage. Journal of Petroleum Science Engineering, 2022, 209: 109979
https://doi.org/10.1016/j.petrol.2021.109979
148 Z Hao, M H Barecka, A A Lapkin. Accelerating net zero from the perspective of optimizing a carbon capture and utilization system. Energy & Environmental Science, 2022, 15(5): 2139–2153
https://doi.org/10.1039/D1EE03923G
149 P Brandl, M Bui, J P Hallett. et al.. Beyond 90% capture: Possible, but at what cost?. International Journal of Greenhouse Gas Control, 2021, 105: 103239
https://doi.org/10.1016/j.ijggc.2020.103239
150 H Ostovari, L Muller, J Skocek. et al.. From unavoidable CO2 source to CO2 sink? A cement industry based on CO2 mineralization.. Environmental Science & Technology, 2021, 55(8): 5212–5223
https://doi.org/10.1021/acs.est.0c07599
151 S Sun, H Sun, P T Williams. et al.. Recent advances in integrated CO2 capture and utilization: A review. Sustainable Energy & Fuels, 2021, 5(18): 4546–4559
https://doi.org/10.1039/D1SE00797A
152 N Wang, K Akimoto, G F Nemet. What went wrong? Learning from three decades of carbon capture, utilization and sequestration (CCUS) pilot and demonstration projects.. Energy Policy, 2021, 158: 112546
https://doi.org/10.1016/j.enpol.2021.112546
153 T Hanein, M Simoni, C L Woo. et al.. Decarbonisation of calcium carbonate at atmospheric temperatures and pressures, with simultaneous CO2 capture, through production of sodium carbonate. Energy & Environmental Science, 2021, 14(12): 6595–6604
https://doi.org/10.1039/D1EE02637B
154 S G Subraveti, S Roussanaly, R Anantharaman. et al.. How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption.. Applied Energy, 2022, 306: 117955
https://doi.org/10.1016/j.apenergy.2021.117955
155 I Mohsin, T A Al-Attas, K Z Sumon. et al.. Economic and environmental assessment of integrated carbon capture and utilization. Cell Reports Physical Science, 2020, 1(7): 100104
https://doi.org/10.1016/j.xcrp.2020.100104
156 L P Dake. Fundamentals of Reservoir Engineering. Elsevier Science, 1983
157 H A Balogun, D Bahamon, S AlMenhali. et al.. Are we missing something when evaluating adsorbents for CO2 capture at the system level?. Energy & Environmental Science, 2021, 14(12): 6360–6380
https://doi.org/10.1039/D1EE01677F
158 J Dixon, K Bell, S Brush. Which way to net zero? A comparative analysis of seven UK 2050 decarbonisation pathways.. Renewable and Sustainable Energy Transition, 2022, 2: 100016
https://doi.org/10.1016/j.rset.2021.100016
159 B AdamsD SutterM Mazzotti, et al.. Combining direct air capture and geothermal heat and electricity generation for net-negative carbon dioxide emissions. In: Proceedings of the World Geothermal Congress, Reykjavik, Iceland, 2020
160 S Deutz, A Bardow. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nature Energy, 2021, 6(2): 203–213
https://doi.org/10.1038/s41560-020-00771-9
161 N McQueen, K V Gomes, C McCormick. et al.. A review of direct air capture (DAC): Scaling up commercial technologies and innovating for the future. Progress in Energy, 2021, 3(3): 032001
https://doi.org/10.1088/2516-1083/abf1ce
162 N McQueen, M J Desmond, R H Socolow. et al.. Natural gas vs. electricity for solvent-based direct air capture. Frontiers in Climate, 2021, 2: 618644
https://doi.org/10.3389/fclim.2020.618644
163 J E T Bistline, G J Blanford. Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 2021, 12(1): 3732
https://doi.org/10.1038/s41467-021-23554-6
164 T Terlouw, K Treyer, C Bauer. et al.. Life cycle assessment of direct air carbon capture and storage with low-carbon energy sources. Environmental Science & Technology, 2021, 55(16): 11397–11411
https://doi.org/10.1021/acs.est.1c03263
165 M Erans, E S Sanz-Pérez, D P Hanak. et al.. Direct air capture: process technology, techno-economic and socio-political challenges. Energy & Environmental Science, 2022, 15(4): 1360–1405
https://doi.org/10.1039/D1EE03523A
166 Energy Agency International. Direct Air Capture. Technical Report, IEA, 2022
167 N McQueen, P Psarras, H Pilorgé. et al.. Cost analysis of direct air capture and sequestration coupled to low-carbon thermal energy in the United States. Environmental Science & Technology, 2020, 54(12): 7542–7551
https://doi.org/10.1021/acs.est.0c00476
168 Energy Agency International. Canada 2022. Technical Report, IEA, 2022
169 Research Service Congressional. The Tax Credit for Carbon Sequestration (Section 45Q). Technical Report, CRS, 2021
170 G Collidi. Reference Data and Supporting Literature Reviews for SMR Based Hydrogen Production with CCS. Technical Report, IEAGHG, 2017
171 B V Mathiesen, H Lund, K Karlsson. 100% renewable energy systems, climate mitigation and economic growth. Applied Energy, 2011, 88(2): 488–501
https://doi.org/10.1016/j.apenergy.2010.03.001
172 A Flamos, P Georgallis, H Doukas. et al.. Using biomass to achieve European Union Energy Targets—A review of biomass status, potential, and supporting policies. International Journal of Green Energy, 2011, 8(4): 411–428
https://doi.org/10.1080/15435075.2011.576292
173 A Demirbaş. Yields of hydrogen-rich gaseous products via pyrolysis from selected biomass samples. Fuel, 2001, 80(13): 1885–1891
https://doi.org/10.1016/S0016-2361(01)00070-9
174 P Parthasarathy, K S Narayanan. Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield—A review. Renewable Energy, 2014, 66: 570–579
https://doi.org/10.1016/j.renene.2013.12.025
175 S Fremaux, S M Beheshti, H Ghassemi. et al.. An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed. Energy Conversion and Management, 2015, 91: 427–432
https://doi.org/10.1016/j.enconman.2014.12.048
176 M Balat. Hydrogen-rich gas production from biomass via pyrolysis and gasification processes and effects of catalyst on hydrogen yield. Energy Sources. Part A, Recovery, Utilization, and Environmental Effects, 2008, 30(6): 552–564
https://doi.org/10.1080/15567030600817191
177 M Ni, D Y Leung, M K Leung. et al.. An overview of hydrogen production from biomass. Fuel Processing Technology, 2006, 87(5): 461–472
https://doi.org/10.1016/j.fuproc.2005.11.003
178 A Godula-Jopek. Hydrogen Production: By Electrolysis. John Wiley & Sons, 2015
179 C Rakousky, U Reimer, K Wippermann. et al.. Polymer electrolyte membrane water electrolysis: Restraining degradation in the presence of fluctuating power. Journal of Power Sources, 2017, 342: 38–47
https://doi.org/10.1016/j.jpowsour.2016.11.118
180 M A Khan, T Al-Attas, S Roy. et al.. Seawater electrolysis for hydrogen production: A solution looking for a problem?. Energy & Environmental Science, 2021, 14(9): 4831–4839
https://doi.org/10.1039/D1EE00870F
181 Y Zhang, Z Ying, J Zhou. et al.. Electrolysis of the Bunsen reaction and properties of the membrane in the sulfur–iodine thermochemical cycle. Industrial & Engineering Chemistry Research, 2014, 53(35): 13581–13588
https://doi.org/10.1021/ie502275s
182 J Rossmeisl, A Logadottir, J K Nørskov. Electrolysis of water on (oxidized) metal surfaces. Chemical Physics, 2005, 319(1−3): 178–184
https://doi.org/10.1016/j.chemphys.2005.05.038
183 J I Levene, M K Mann, R M Margolis. et al.. An analysis of hydrogen production from renewable electricity sources. Solar Energy, 2007, 81(6): 773–780
https://doi.org/10.1016/j.solener.2006.10.005
184 S U Khan, M Al-Shahry, W B Jr Ingler. Efficient photochemical water splitting by a chemically modified n-TiO2. Science, 2002, 297(5590): 2243–2245
https://doi.org/10.1126/science.1075035
185 Z Yan, J L Hitt, J A Turner. et al.. Renewable electricity storage using electrolysis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12558–12563
https://doi.org/10.1073/pnas.1821686116
186 M Chatenet, B G Pollet, D R Dekel. et al.. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chemical Society Reviews, 2022, 51(11): 4583–4762
https://doi.org/10.1039/D0CS01079K
187 S G Nnabuife, J Ugbeh-Johnson, N E Okeke. et al.. Present and projected developments in hydrogen production: A technological review. Carbon Capture Science & Technology, 2022, 100042
https://doi.org/10.1016/j.ccst.2022.100042
188 H Xie, Z Zhao, T Liu. et al.. A membrane-based seawater electrolyser for hydrogen generation. Nature, 2022, 612(7941): 673–678
https://doi.org/10.1038/s41586-022-05379-5
189 P Diéguez, A Ursúa, P Sanchis. et al.. Thermal performance of a commercial alkaline water electrolyzer: Experimental study and mathematical modeling. International Journal of Hydrogen Energy, 2008, 33(24): 7338–7354
https://doi.org/10.1016/j.ijhydene.2008.09.051
190 K Zeng, D Zhang. Recent progress in alkaline water electrolysis for hydrogen production and applications. Progress in Energy and Combustion Science, 2010, 36(3): 307–326
https://doi.org/10.1016/j.pecs.2009.11.002
191 J E Funk. Thermochemical hydrogen production: Past and present. International Journal of Hydrogen Energy, 2001, 26(3): 185–190
https://doi.org/10.1016/S0360-3199(00)00062-8
192 M F Orhan, I Dincer, M A Rosen. Energy and exergy assessments of the hydrogen production step of a copper–chlorine thermochemical water splitting cycle driven by nuclear-based heat. International Journal of Hydrogen Energy, 2008, 33(22): 6456–6466
https://doi.org/10.1016/j.ijhydene.2008.08.035
193 S Abanades, P Charvin, F Lemont. et al.. Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen. International Journal of Hydrogen Energy, 2008, 33(21): 6021–6030
https://doi.org/10.1016/j.ijhydene.2008.05.042
194 T Ratlamwala, I Dincer. Comparative energy and exergy analyses of two solar-based integrated hydrogen production systems. International Journal of Hydrogen Energy, 2015, 40(24): 7568–7578
https://doi.org/10.1016/j.ijhydene.2014.10.123
195 K R Schultz. Use of the Modular Helium Reactor for Hydrogen Production. General Atomics Report: GA-A24428, 2003
196 M Orhan, I Dincer, G Naterer. Cost analysis of a thermochemical Cu–Cl pilot plant for nuclear-based hydrogen production. International Journal of Hydrogen Energy, 2008, 33(21): 6006–6020
https://doi.org/10.1016/j.ijhydene.2008.05.038
197 P Charvin, A Stéphane, L Florent. et al.. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles. Energy Conversion and Management, 2008, 49(6): 1547–1556
https://doi.org/10.1016/j.enconman.2007.12.011
198 R Kothari, D Buddhi, R Sawhney. Comparison of environmental and economic aspects of various hydrogen production methods. Renewable & Sustainable Energy Reviews, 2008, 12(2): 553–563
https://doi.org/10.1016/j.rser.2006.07.012
199 R M Navarro, M Pena, J Fierro. Hydrogen production reactions from carbon feedstocks: Fossil fuels and biomass. Chemical Reviews, 2007, 107(10): 3952–3991
https://doi.org/10.1021/cr0501994
200 T V Laurinavichene, S N Kosourov, M L Ghirardi. et al.. Prolongation of H2 photoproduction by immobilized, sulfur-limited Chlamydomonas reinhardtii cultures. Journal of Biotechnology, 2008, 134(3−4): 275–277
https://doi.org/10.1016/j.jbiotec.2008.01.006
201 K L Kovács, G Maróti, G Rákhely. A novel approach for biohydrogen production. International Journal of Hydrogen Energy, 2006, 31(11): 1460–1468
https://doi.org/10.1016/j.ijhydene.2006.06.011
202 T Bak, J Nowotny, M Rekas. et al.. Photo-electrochemical properties of the TiO2-Pt system in aqueous solutions. International Journal of Hydrogen Energy, 2002, 27(1): 19–26
https://doi.org/10.1016/S0360-3199(01)00090-8
203 V Aroutiounian, V Arakelyan, G Shahnazaryan. Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting. Solar Energy, 2005, 78(5): 581–592
https://doi.org/10.1016/j.solener.2004.02.002
204 J Akikusa, S U Khan. Photoelectrolysis of water to hydrogen in p-SiC/Pt and p-SiC/n-TiO2 cells. International Journal of Hydrogen Energy, 2002, 27(9): 863–870
https://doi.org/10.1016/S0360-3199(01)00191-4
205 M N M IbrahimL F Koederitz. Two-phase relative permeability prediction using a linear regression model. In: SPE Eastern Regional Meeting, West Virginia, USA, 2000
206 A Züttel. Materials for hydrogen storage. Materials Today, 2003, 6(9): 24–33
https://doi.org/10.1016/S1369-7021(03)00922-2
207 J Ogden, A M Jaffe, D Scheitrum. et al.. Natural gas as a bridge to hydrogen transportation fuel: Insights from the literature. Energy Policy, 2018, 115: 317–329
https://doi.org/10.1016/j.enpol.2017.12.049
208 M Conte, A Iacobazzi, M Ronchetti. et al.. Hydrogen economy for a sustainable development: State-of-the-art and technological perspectives. Journal of Power Sources, 2001, 100(1−2): 171–187
https://doi.org/10.1016/S0378-7753(01)00893-X
209 R KrishnaE TitusM Salimian, et al.. Hydrogen storage for energy application. In: LIU J, eds. Hydrogen Storage. London: IntechOpen, 2012
210 H Barthélémy, M Weber, F Barbier. Hydrogen storage: recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 2017, 42(11): 7254–7262
https://doi.org/10.1016/j.ijhydene.2016.03.178
211 Y Okada, E Sasaki, E Watanabe. et al.. Development of dehydrogenation catalyst for hydrogen generation in organic chemical hydride method. International Journal of Hydrogen Energy, 2006, 31(10): 1348–1356
https://doi.org/10.1016/j.ijhydene.2005.11.014
212 R Lan, J T S Irvine, S Tao. Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy, 2012, 37(2): 1482–1494
https://doi.org/10.1016/j.ijhydene.2011.10.004
213 T He, Q Pei, P Chen. Liquid organic hydrogen carriers. Journal of Energy Chemistry, 2015, 24(5): 587–594
https://doi.org/10.1016/j.jechem.2015.08.007
214 E Clot, O Eisenstein, R H Crabtree. Computational structure–activity relationships in H2 storage: How placement of N atoms affects release temperatures in organic liquid storage materials. Chemical Communications (Cambridge), 2007, (22): 2231–2233
https://doi.org/10.1039/B705037B
215 D Forberg, T Schwob, M Zaheer. et al.. Single-catalyst high-weight% hydrogen storage in an N-heterocycle synthesized from lignin hydrogenolysis products and ammonia. Nature Communications, 2016, 7(1): 13201
https://doi.org/10.1038/ncomms13201
216 K i Fujita, Y Tanaka, M Kobayashi. et al.. Homogeneous perdehydrogenation and perhydrogenation of fused bicyclic N-heterocycles catalyzed by iridium complexes bearing a functional bipyridonate ligand. Journal of the American Chemical Society, 2014, 136(13): 4829–4832
https://doi.org/10.1021/ja5001888
217 W Luo, L N Zakharov, S Y Liu. 1, 2-BN cyclohexane: Synthesis, structure, dynamics, and reactivity. Journal of the American Chemical Society, 2011, 133(33): 13006–13009
https://doi.org/10.1021/ja206497x
218 W Luo, P G Campbell, L N Zakharov. et al.. A single-component liquid-phase hydrogen storage material. Journal of the American Chemical Society, 2011, 133(48): 19326–19329
https://doi.org/10.1021/ja208834v
219 N Brückner, K Obesser, A Bösmann. et al.. Evaluation of Industrially applied heat-transfer fluids as liquid organic hydrogen carrier systems. ChemSusChem, 2014, 7(1): 229–235
https://doi.org/10.1002/cssc.201300426
220 S Enthaler, J von Langermann, T Schmidt. Carbon dioxide and formic acid—The couple for environmental-friendly hydrogen storage?. Energy & Environmental Science, 2010, 3(9): 1207–1217
https://doi.org/10.1039/b907569k
221 M Grasemann, G Laurenczy. Formic acid as a hydrogen source–recent developments and future trends. Energy & Environmental Science, 2012, 5(8): 8171–8181
https://doi.org/10.1039/c2ee21928j
222 T N VezirogluS Y ZaginaichenkoD V Schur, et al.. Hydrogen materials science and chemistry of carbon nanomaterials. In: Proceedings of the NATO Advanced Research Workshop on Hydrogen Materials Science and Chemistry of Carbon Nanomaterials, Sudak, 2006
223 A Babarit, J C Gilloteaux, G Clodic. et al.. Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters. International Journal of Hydrogen Energy, 2018, 43(15): 7266–7289
https://doi.org/10.1016/j.ijhydene.2018.02.144
224 E Blackstock. Kawasaki launches the world’s first liquid hydrogen transport ship. 2019-12-15, available at website of newatlas
225 B Pan, X Yin, Y Ju. et al.. Underground hydrogen storage: influencing parameters and future outlook. Advances in Colloid and Interface Science, 2021, 294: 102473
https://doi.org/10.1016/j.cis.2021.102473
226 J Zheng, X Liu, P Xu. et al.. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 2012, 37(1): 1048–1057
https://doi.org/10.1016/j.ijhydene.2011.02.125
227 L Zhou. Progress and problems in hydrogen storage methods. Renewable & Sustainable Energy Reviews, 2005, 9(4): 395–408
https://doi.org/10.1016/j.rser.2004.05.005
228 B Sakintuna, F Lamari-Darkrim, M Hirscher. Metal hydride materials for solid hydrogen storage: a review. International Journal of Hydrogen Energy, 2007, 32(9): 1121–1140
https://doi.org/10.1016/j.ijhydene.2006.11.022
229 R Schulz, J Huot, G X Liang. et al.. Structure and hydrogen sorption properties of ball milled Mg dihydride. Journal of Metastable and Nanocrystalline Materials, 1999, 2: 615–622
230 S Niaz, T Manzoor, A H Pandith. Hydrogen storage: Materials, methods and perspectives. Renewable & Sustainable Energy Reviews, 2015, 50: 457–469
https://doi.org/10.1016/j.rser.2015.05.011
231 E David. An overview of advanced materials for hydrogen storage. Journal of Materials Processing Technology, 2005, 162–163: 169–177
https://doi.org/10.1016/j.jmatprotec.2005.02.027
232 W Grochala, P P Edwards. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chemical Reviews, 2004, 104(3): 1283–1316
https://doi.org/10.1021/cr030691s
233 J Huot, G Liang, S Boily. et al.. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. Journal of Alloys and Compounds, 1999, 293–295: 495–500
https://doi.org/10.1016/S0925-8388(99)00474-0
234 F L Darkrim, P Malbrunot, G Tartaglia. Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 2002, 27(2): 193–202
https://doi.org/10.1016/S0360-3199(01)00103-3
235 F Darkrim, D Levesque. High adsorptive property of opened carbon nanotubes at 77 K. Journal of Physical Chemistry B, 2000, 104(29): 6773–6776
https://doi.org/10.1021/jp0006532
236 A Dillon, M Heben. Hydrogen storage using carbon adsorbents: past, present and future. Applied Physics. A, Materials Science & Processing, 2001, 72(2): 133–142
https://doi.org/10.1007/s003390100788
237 P Chen, X Wu, J Lin. et al.. High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science, 1999, 285(5424): 91–93
https://doi.org/10.1126/science.285.5424.91
238 C H Chen, C C Huang. Hydrogen storage by KOH-modified multi-walled carbon nanotubes. International Journal of Hydrogen Energy, 2007, 32(2): 237–246
https://doi.org/10.1016/j.ijhydene.2006.03.010
239 Q Zhao, W Yuan, J Liang. et al.. Synthesis and hydrogen storage studies of metal−organic framework UiO-66. International Journal of Hydrogen Energy, 2013, 38(29): 13104–13109
https://doi.org/10.1016/j.ijhydene.2013.01.163
240 J Li, S Cheng, Q Zhao. et al.. Synthesis and hydrogen-storage behavior of metal–organic framework MOF-5. International Journal of Hydrogen Energy, 2009, 34(3): 1377–1382
https://doi.org/10.1016/j.ijhydene.2008.11.048
241 L Xia, Q Liu, F Wang. et al.. Improving the hydrogen storage properties of metal-organic framework by functionalization. Journal of Molecular Modeling, 2016, 22(10): 254
https://doi.org/10.1007/s00894-016-3129-3
242 N S Bobbitt, J Chen, R Q Snurr. High-throughput screening of metal–organic frameworks for hydrogen storage at cryogenic temperature. Journal of Physical Chemistry C, 2016, 120(48): 27328–27341
https://doi.org/10.1021/acs.jpcc.6b08729
243 Z Ozturk, D A Kose, Z S Sahin. et al.. Novel 2D micro-porous metal-organic framework for hydrogen storage. International Journal of Hydrogen Energy, 2016, 41(28): 12167–12174
https://doi.org/10.1016/j.ijhydene.2016.05.170
244 P Railey, Y Song, T Liu. et al.. Metal organic frameworks with immobilized nanoparticles: Synthesis and applications in photocatalytic hydrogen generation and energy storage. Materials Research Bulletin, 2017, 96: 385–394
https://doi.org/10.1016/j.materresbull.2017.04.020
245 S Rahali, Y Belhocine, M Seydou. et al.. Multiscale study of the structure and hydrogen storage capacity of an aluminum metal-organic framework. International Journal of Hydrogen Energy, 2017, 42(22): 15271–15282
https://doi.org/10.1016/j.ijhydene.2017.04.258
246 Z Chen, J Chen, Y Li. Metal–organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126
https://doi.org/10.1016/S1872-2067(17)62852-3
247 R Tarkowski. Underground hydrogen storage: characteristics and prospects. Renewable & Sustainable Energy Reviews, 2019, 105: 86–94
https://doi.org/10.1016/j.rser.2019.01.051
248 L Lankof, K Urbańczyk, R Tarkowski. Assessment of the potential for underground hydrogen storage in salt domes. Renewable & Sustainable Energy Reviews, 2022, 160: 112309
https://doi.org/10.1016/j.rser.2022.112309
249 L Lankof, R Tarkowski. Assessment of the potential for underground hydrogen storage in bedded salt formation. International Journal of Hydrogen Energy, 2020, 45(38): 19479–19492
https://doi.org/10.1016/j.ijhydene.2020.05.024
250 A Sáinz-García, E Abarca, V Rubí. et al.. Assessment of feasible strategies for seasonal underground hydrogen storage in a saline aquifer. International Journal of Hydrogen Energy, 2017, 42(26): 16657–16666
https://doi.org/10.1016/j.ijhydene.2017.05.076
251 C Hemme, W Van Berk. Hydrogeochemical modeling to identify potential risks of underground hydrogen storage in depleted gas fields. Applied Sciences (Basel, Switzerland), 2018, 8(11): 2282
https://doi.org/10.3390/app8112282
252 L Rosa, M Mazzotti. Potential for hydrogen production from sustainable biomass with carbon capture and storage. Renewable & Sustainable Energy Reviews, 2022, 157: 112123
https://doi.org/10.1016/j.rser.2022.112123
253 J M English, K L English. An overview of carbon capture and storage and its potential role in the energy transition. First Break, 2022, 40(4): 35–40
https://doi.org/10.3997/1365-2397.fb2022028
254 C B Agaton, K I T Batac, E M Jr Reyes. Prospects and challenges for green hydrogen production and utilization in the Philippines. International Journal of Hydrogen Energy, 2022, 47(41): 17859–17870
https://doi.org/10.1016/j.ijhydene.2022.04.101
255 A Ahmed, A Q Al-Amin, A F Ambrose. et al.. Hydrogen fuel and transport system: A sustainable and environmental future. International Journal of Hydrogen Energy, 2016, 41(3): 1369–1380
https://doi.org/10.1016/j.ijhydene.2015.11.084
256 M Ball, M Wietschel. The future of hydrogen–opportunities and challenges. International Journal of Hydrogen Energy, 2009, 34(2): 615–627
https://doi.org/10.1016/j.ijhydene.2008.11.014
257 Y Li, F Taghizadeh-Hesary. The economic feasibility of green hydrogen and fuel cell electric vehicles for road transport in China. Energy Policy, 2022, 160: 112703
https://doi.org/10.1016/j.enpol.2021.112703
258 Energy Agency International. Hydrogen Projects Database. Technical Report, IEA, 2021
259 R R Ratnakar, N Gupta, K Zhang. et al.. Hydrogen supply chain and challenges in large-scale LH2 storage and transportation. International Journal of Hydrogen Energy, 2021, 46(47): 24149–24168
https://doi.org/10.1016/j.ijhydene.2021.05.025
260 R B ScottW H DentonC M Nicholls. Technology and Uses of Liquid Hydrogen. Pergamon: Elsevier, 2013
261 K Zhang, H C Lau, Z Chen. Using blue hydrogen to decarbonize heavy oil and oil sands operations in Canada. ACS Sustainable Chemistry & Engineering, 2022, 10(30): 10003–10013
https://doi.org/10.1021/acssuschemeng.2c02691
262 Energy Agency International. Global Hydrogen Review. Technical Report, IEA, 2022
263 K Schoots, F Ferioli, G Kramer. et al.. Learning curves for hydrogen production technology: An assessment of observed cost reductions. International Journal of Hydrogen Energy, 2008, 33(11): 2630–2645
https://doi.org/10.1016/j.ijhydene.2008.03.011
264 L M Pastore, G Lo Basso, M Sforzini. et al.. Technical, economic and environmental issues related to electrolysers capacity targets according to the Italian Hydrogen Strategy: A critical analysis. Renewable & Sustainable Energy Reviews, 2022, 166: 112685
https://doi.org/10.1016/j.rser.2022.112685
265 B Lane, J Reed, B Shaffer. et al.. Forecasting renewable hydrogen production technology shares under cost uncertainty. International Journal of Hydrogen Energy, 2021, 46(54): 27293–27306
https://doi.org/10.1016/j.ijhydene.2021.06.012
266 Department of Education US. DOE technical targets for hydrogen production from electrolysis. 2022–10, available at website of energy government
267 X Zhang, C Bauer, C L Mutel. et al.. Life cycle assessment of power-to-gas: Approaches, system variations and their environmental implications. Applied Energy, 2017, 190: 326–338
https://doi.org/10.1016/j.apenergy.2016.12.098
268 I M Algunaibet, G Guillén-Gosálbez. Life cycle burden-shifting in energy systems designed to minimize greenhouse gas emissions: Novel analytical method and application to the United States. Journal of Cleaner Production, 2019, 229: 886–901
https://doi.org/10.1016/j.jclepro.2019.04.276
269 A González-Garay, M S Frei, A Al-Qahtani. et al.. Plant-to-planet analysis of CO2-based methanol processes. Energy & Environmental Science, 2019, 12(12): 3425–3436
https://doi.org/10.1039/C9EE01673B
270 B Parkinson, P Balcombe, J Speirs. et al.. Levelized cost of CO2 mitigation from hydrogen production routes. Energy & Environmental Science, 2019, 12(1): 19–40
https://doi.org/10.1039/C8EE02079E
271 S Sleep, R Munjal, M Leitch. et al.. Carbon footprinting of carbon capture and utilization technologies: Discussion of the analysis of carbon XPRIZE competition team finalists. Clean Energy, 2021, 5(4): 587–599
https://doi.org/10.1093/ce/zkab039
272 K Motazedi, Y K Salkuyeh, I J Laurenzi. et al.. Economic and environmental competitiveness of high temperature electrolysis for hydrogen production. International Journal of Hydrogen Energy, 2021, 46(41): 21274–21288
https://doi.org/10.1016/j.ijhydene.2021.03.226
273 C M Liu, N K Sandhu, S T McCoy. et al.. A life cycle assessment of greenhouse gas emissions from direct air capture and Fischer–Tropsch fuel production. Sustainable Energy & Fuels, 2020, 4(6): 3129–3142
https://doi.org/10.1039/C9SE00479C
274 S Kolb, T Plankenbühler, K Hofmann. et al.. Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review. Renewable & Sustainable Energy Reviews, 2021, 146: 111147
https://doi.org/10.1016/j.rser.2021.111147
275 J A Bergerson, A Brandt, J Cresko. et al.. Life cycle assessment of emerging technologies: Evaluation techniques at different stages of market and technical maturity. Journal of Industrial Ecology, 2020, 24(1): 11–25
https://doi.org/10.1111/jiec.12954
276 J Bergerson, S Cucurachi, T P Seager. Bringing a life cycle perspective to emerging technology development. Journal of Industrial Ecology, 2020, 24(1): 6–10
https://doi.org/10.1111/jiec.12990
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed