Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (1): 9-15   https://doi.org/10.1007/s11708-023-0871-y
  本期目录
Highlights of mainstream solar cell efficiencies in 2022
Wenzhong SHEN1(), Yixin ZHAO2(), Feng LIU3()
1. Institute of Solar Energy, and Key Laboratory of Artificial Structures and Quantum Control of the Ministry of Education, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
2. School of Environmental Science and Engineering, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
3. School of Chemistry and Chemical Engineering, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(353 KB)   HTML
收稿日期: 2023-01-20      出版日期: 2023-03-29
Corresponding Author(s): Wenzhong SHEN,Yixin ZHAO,Feng LIU   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(1): 9-15.
Wenzhong SHEN, Yixin ZHAO, Feng LIU. Highlights of mainstream solar cell efficiencies in 2022. Front. Energy, 2023, 17(1): 9-15.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0871-y
https://academic.hep.com.cn/fie/CN/Y2023/V17/I1/9
Solar cell type PCE/% Area/cm2 VOC/mV JSC/(mA·cm−2) FF/% Test center Report date Description
n-SHJ 26.07 274.3 746.7 40.71 85.74 ISFH Mar. SunDrive/Maxwell copper plating
n-SHJ 25.40 274.5 749.3 39.75 85.28 ISFH Mar. Longi TCO without indium
n-SHJ 25.62 274.5 747.4 40.11 85.48 ISFH Apr. Maxwell reducing 50% indium and 55% silver (with copper)
n-SHJ 26.50 274.4 750.6 41.01 86.08 ISFH Jun. Longi multilayer passivation
n-SHJ 25.94 274.4 747.5 40.49 85.71 ISFH Aug. Maxwell/SunDrive reducing 50% indium and copper plating
n-SHJ 26.41 274.5 750.2 40.80 86.28 ISFH Sept. SunDrive/Maxwell copper plating
n-SHJ 26.81 274.4 751.4 41.45 86.07 ISFH Oct. Longi multilayer passivation
n-SHJ 26.09 274.3 749.6 40.52 85.90 ISFH Dec. Longi TCO without indium
p-SHJ 24.47 244.7 742.9 40.14 82.05 ISFH Mar. INES Ga-doped Si wafer
p-SHJ 25.47 274.3 747.6 40.66 83.80 ISFH Mar. Longi Ga-doped Si wafer
p-SHJ 26.12 274.3 750.2 41.09 84.76 ISFH Sept. Longi Ga-doped Si wafer
p-SHJ 26.56 274.1 751.3 41.30 85.59 ISFH Oct. Longi Ga-doped Si wafer
n-TOPCon 25.5 440 NIM Mar. Trina LPCVD
n-TOPCon 25.7 330 NIM Apr. Jinko LPCVD
n-TOPCon 26.1 330 NIM Oct. Jinko LPCVD
n-TOPCon 26.1 330 NIM Nov. Jolywood PVD
n-TOPCon 26.4 330 NIM Dec. Jinko LPCVD
p-PERC 24.5 440 NIM Jul. Trina
Tab.1  
Solar cell type PCE/% Area/cm2 VOC/V JSC/(mA·cm−2) FF/% Test center Report date Description
Perovskite (one-sun cell) 23.7 1.062 (da) 1.213 24.99 78.4 NPVM May USTC
Perovskite (minimodule) 22.4 26.02 (da) 1.127 25.61 77.6 NPVM Jul. EPFLSion/NCEPU
Perovskite/perovskite tandem (concentrator cell) 29.0 0.049 (da) Not yet disclosed JET Dec. 2-terminal, NJU/Renshine
Perovskite/perovskite tandem (one-sun cell) 26.4 1.044 (da) 2.118 15.22 82.6 JET Mar. 2-terminal, SichuanU/EMPA
Perovskite/perovskite tandem (minimodule) 24.5 20.25 (da) 2.157 14.86 77.5 JET Jun. 2-terminal, NJU/Renshine
Perovskite/silicon tandem 32.5 1.014 (da) 1.980 20.24 81.2 JRC-ESTI Nov. 2-terminal, HZB
Perovskite/organic tandem 23.4 0.055 (da) 2.136 14.56 75.6 JET Mar. 2-terminal, NUS/SERIS
Tab.2  
Solar cell type PCE/% Area/cm2 VOC/V JSC/(mA·cm−2) FF/% Test center Report date Description
Organic (thin film) 18.9 0.032 0.914 26.54 77.8 NIM Jun. UCAS
Organic (thin film) 19.12 0.045 0.892 26.88 79.73 NPVM Aug. ZJU
Organic (thin film) 19.23 0.031 0.891 26.70 80.84 NPVM May SJTU
Organic (thin film) 19.35 0.046 0.882 27.82 78.90 NPVM Sept. ZJU
All-polymer (thin film) 17.8 0.051 0.910 25.52 76.7 NIM Dec. WHU
Organic (minimodule) 14.13 19.31 5.805 3.50 69.57 NPVM May ZJU
Tab.3  
1 W Z Shen, Y X Zhao, F Liu. Highlights of mainstream solar cell efficiencies in 2021. Frontiers in Energy, 2022, 16(1): 1–8
https://doi.org/10.1007/s11708-022-0816-x
2 K Yoshikawa, H Kawasaki, W Yoshida. et al.. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2(5): 17032
https://doi.org/10.1038/nenergy.2017.32
3 W Z ShenZ P Li. Physics and Devices of Silicon Heterojunction Solar Cells. Beijing: Scientific Press, 2014
4 M YangX N RuS Yin, et al.. Progress of high-efficient silicon heterojunction solar cells. In: 18th China SoG Silicon and PV Power Conference, Taiyuan, China, 2022
5 M A Green, A W Blakers. Advantages of metal-insulator-semiconductor structures for silicon solar cells. Solar Cells, 1983, 8(1): 3–16
https://doi.org/10.1016/0379-6787(83)90036-4
6 F Feldmann, M Bivour, C Reichel. et al.. Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Solar Energy Materials and Solar Cells, 2014, 120: 270–274
https://doi.org/10.1016/j.solmat.2013.09.017
7 F Feldmann, G Nogay, P Löper. et al.. Charge carrier transport mechanisms of passivating contacts studied by temperature-dependent J-V measurements. Solar Energy Materials and Solar Cells, 2018, 178: 15–19
https://doi.org/10.1016/j.solmat.2018.01.008
8 A Richter, J Benick, F Feldmann. et al.. n-type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Solar Energy Materials and Solar Cells, 2017, 173: 96–105
https://doi.org/10.1016/j.solmat.2017.05.042
9 A Richter, R Müller, J Benick. et al.. Design rules for high-efficiency both-sides contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nature Energy, 2021, 6(4): 429–438
https://doi.org/10.1038/s41560-021-00805-w
10 D M Chen, Y F Chen, Z G Wang. et al.. 24.58% total area efficiency of screen-printed, large area industrial silicon solar cells with the tunnel oxide passivated contacts (i-TOPCon) design. Solar Energy Materials and Solar Cells, 2020, 206: 110258
https://doi.org/10.1016/j.solmat.2019.110258
11 Renewable Energy Laboratory National. Best research-cell efficiency chart. 2022, available at website of NREL
12 M A Green, E D Dunlop, G Siefer. et al.. Solar cell efficiency tables (Version 61). Progress in Photovoltaics: Research and Applications, 2023, 31(1): 3–16
https://doi.org/10.1002/pip.3646
13 Renewable Energy Laboratory National. Best research-cell efficiencies: emerging photovoltaics. 2022, available at website of NREL
14 M A Green, E D Dunlop, J Hohl-Ebinger. et al.. Solar cell efficiency tables (version 60). Progress in Photovoltaics: Research and Applications, 2022, 30(7): 687–701
https://doi.org/10.1002/pip.3595
15 B DingY ZhangY Ding, et al.. Development of efficient and stable perovskite solar cells and modules. In: The 5th International Conference on Materials & Environmental Science, ICMES-2022, Saïdia
16 Y Ding, B Ding, H Kanda. et al.. Single-crystalline TiO2 nanoparticles for stable and efficient perovskite modules. Nature Nanotechnology, 2022, 17(6): 598–605
https://doi.org/10.1038/s41565-022-01108-1
17 K Xiao, Y H Lin, M Zhang. et al.. Scalable processing for realizing 21.7%-efficient all-perovskite tandem solar modules. Science, 2022, 376(6594): 762–767
https://doi.org/10.1126/science.abn7696
18 Taiyangnews. Renshine solar announces 29.0% efficiency for all-perovskite tandem solar cell. 2023-1-5, available at website of perovskite-info
19 Berlin Helmholtz-Zentrum. World record back at HZB: Tandem solar cell achieves 32.5 percent efficiency. 2022-12-19, available at website of helmholtz-berlin
20 E Bellini. CSEM, EPFL achieve 31.25% efficiency for tandem perovskite-silicon solar cell. 2022-7-7, available at website of pv-magazine
21 W Chen, Y Zhu, J Xiu. et al.. Monolithic perovskite/organic tandem solar cells with 23.6% efficiency enabled by reduced voltage losses and optimized interconnecting layer. Nature Energy, 2022, 7(3): 229–237
https://doi.org/10.1038/s41560-021-00966-8
22 M Jošt, E Köhnen, A Al-Ashouri. et al.. Perovskite/CIGS tandem solar cells: from certified 24.2% toward 30% and beyond. ACS Energy Letters, 2022, 7(4): 1298–1307
https://doi.org/10.1021/acsenergylett.2c00274
23 BELLINI EMILIANO. HZB scientists announce 24.16% efficiency for tandem CIGS solar cell. 2020-4-16, available at website of pv-magazine
24 A Al-Ashouri, E Köhnen, B Li. et al.. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370(6522): 1300–1309
https://doi.org/10.1126/science.abd4016
25 A Polman, M Knight, E C Garnett. et al.. Photovoltaic materials: present efficiencies and future challenges. Science, 2016, 352(6283): aad4424
https://doi.org/10.1126/science.aad4424
26 L Zhu, M Zhang, J Xu. et al.. Single-junction organic solar cells with over 19% efficiency enabled by a refined double-fibril network morphology. Nature Materials, 2022, 21(6): 656–663
https://doi.org/10.1038/s41563-022-01244-y
27 J Song, M Zhang, T Hao. et al.. Design rules of the mixing phase and impacts on device performance in high-efficiency organic photovoltaics. Research, 2022, 9817267
https://doi.org/10.34133/2022/9817267
28 C Li, J Zhou, J Song. et al.. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nature Energy, 2021, 6(6): 605–613
https://doi.org/10.1038/s41560-021-00820-x
29 C He, Y Pan, G Lu. et al.. Versatile sequential casting processing for highly efficient and stable binary organic photovoltaics. Advanced Materials, 2022, 34(33): 2203379
https://doi.org/10.1002/adma.202203379
30 Y Wei, Z Chen, G Lu. et al.. Binary organic solar cells breaking 19% via manipulating the vertical component distribution. Advanced Materials, 2022, 34(33): 2204718
https://doi.org/10.1002/adma.202204718
31 L Zhan, S Li, Y Li. et al.. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Advanced Energy Materials, 2022, 12: 2201076
https://doi.org/10.1002/aenm.202201076
32 M Zhang, L Zhu, G Zhou. et al.. Single-layered organic photovoltaics with double cascading charge transport pathways: 18% efficiencies. Nature Communications, 2021, 12(1): 309
https://doi.org/10.1038/s41467-020-20580-8
33 L Zhan, S Yin, Y Li. et al.. Multiphase Morphology with enhanced carrier lifetime via quaternary strategy enables high-efficiency, thick-film, and large-area organic photovoltaics. Advanced Materials, 2022, 34(45): 2206269
https://doi.org/10.1002/adma.202206269
34 J Wang, Y Cui, Y Xu. et al.. A new polymer donor enables binary all‐polymer organic photovoltaic cells with 18% efficiency and excellent mechanical robustness. Advanced Materials, 2022, 34(35): 2205009
https://doi.org/10.1002/adma.202205009
35 L MaY Cui J Zhang, et al.. High-efficiency and mechanically robust all-polymer organic photovoltaic cells enabled by optimized fibril network morphology. Advanced Materials, 2023, in press online, http://doi.org/10.1002/adma.202208926
36 R Sun, T Wang, Q Fan. et al.. 18.2%-efficient ternary all-polymer organic solar cells with improved stability enabled by a chlorinated guest polymer acceptor. Joule, 2023, 7(1): 221–237
https://doi.org/10.1016/j.joule.2022.12.007
37 Y Jiang, X Dong, L Sun. et al.. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nature Energy, 2022, 7(4): 352–359
https://doi.org/10.1038/s41560-022-00997-9
38 J Fan, Z X Liu, J Rao. et al.. High-performance organic solar modules via bilayer-merged-annealing assisted blade coating. Advanced Materials, 2022, 34(28): 2110569
https://doi.org/10.1002/adma.202110569
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed