Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (5): 569-584   https://doi.org/10.1007/s11708-023-0875-7
  本期目录
Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries
Min HONG, Zhiyong WANG, Zhangqin SHI, Zheng LIANG()
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(19752 KB)   HTML
Abstract

Lithium (Li) metal is believed to be the “Holy Grail” among all anode materials for next-generation Li-based batteries due to its high theoretical specific capacity (3860 mAh/g) and lowest redox potential (−3.04 V). Disappointingly, uncontrolled dendrite formation and “hostless” deposition impede its further development. It is well accepted that the construction of three-dimensional (3D) composite Li metal anode could tackle the above problems to some extent by reducing local current density and maintaining electrode volume during cycling. However, most strategies to build 3D composite Li metal anode require either electrodeposition or melt-infusion process. In spite of their effectiveness, these procedures bring multiple complex processing steps, high temperature, and harsh experimental conditions which cannot meet the actual production demand in consideration of cost and safety. Under this condition, a novel method to construct 3D composite anode via simple mechanical modification has been recently proposed which does not involve harsh conditions, fussy procedures, or fancy equipment. In this mini review, a systematic and in-depth investigation of this mechanical deformation technique to build 3D composite Li metal anode is provided. First, by summarizing a number of recent studies, different mechanical modification approaches are classified clearly according to their specific procedures. Then, the effect of each individual mechanical modification approach and its working mechanisms is reviewed. Afterwards, the merits and limits of different approaches are compared. Finally, a general summary and perspective on construction strategies for next-generation 3D composite Li anode are presented.

Key wordslithium (Li)-ion battery (LIB)    Li metal battery    three-dimensional (3D) composite Li metal anode    mechanical modification    reducing local current density
收稿日期: 2022-10-24      出版日期: 2023-11-09
Corresponding Author(s): Zheng LIANG   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(5): 569-584.
Min HONG, Zhiyong WANG, Zhangqin SHI, Zheng LIANG. Three-dimensional composite Li metal anode by simple mechanical modification for high-energy batteries. Front. Energy, 2023, 17(5): 569-584.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0875-7
https://academic.hep.com.cn/fie/CN/Y2023/V17/I5/569
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 L Trahey, F R Brushett, N P Balsara. et al.. Energy storage emerging: A perspective from the Joint Center for Energy Storage Research. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(23): 12550–12557
https://doi.org/10.1073/pnas.1821672117
2 H S Boudet. Public perceptions of and responses to new energy technologies. Nature Energy, 2019, 4(6): 446–455
https://doi.org/10.1038/s41560-019-0399-x
3 Y Wu, W Wang, J Ming. et al.. An exploration of new energy storage system: High energy density, high safety, and fast charging lithium ion battery. Advanced Functional Materials, 2019, 29(1): 1805978
https://doi.org/10.1002/adfm.201805978
4 X He, D Bresser, S Passerini. et al.. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews. Materials, 2021, 6(11): 1036–1052
https://doi.org/10.1038/s41578-021-00345-5
5 K Matsumoto, J Hwang, S Kaushik. et al.. Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy & Environmental Science, 2019, 12(11): 3247–3287
https://doi.org/10.1039/C9EE02041A
6 Z Zhang, H Chen, Z Hu. et al.. Ion conduction path in composite solid electrolytes for lithium metal batteries: From polymer rich to ceramic rich. Frontiers in Energy, 2022, 16(5): 706–733
https://doi.org/10.1007/s11708-022-0833-9
7 J Xie, Y C Lu. A retrospective on lithium-ion batteries. Nature Communications, 2020, 11(1): 2499
https://doi.org/10.1038/s41467-020-16259-9
8 F Wu, J Maier, Y Yu. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020, 49(5): 1569–1614
https://doi.org/10.1039/C7CS00863E
9 J A Mennel, D Chidambaram. A review on the development of electrolytes for lithium-based batteries for low temperature applications. Frontiers in Energy, 2023, 17(1): 43–71
10 F Duffner, N Kronemeyer, J Tübke. et al.. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nature Energy, 2021, 6(2): 123–134
https://doi.org/10.1038/s41560-020-00748-8
11 J W Choi, D Aurbach. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews. Materials, 2016, 1(4): 16013
https://doi.org/10.1038/natrevmats.2016.13
12 J Duan, X Tang, H Dai. et al.. Building safe lithium-ion batteries for electric vehicles: A review. Electrochemical Energy Reviews, 2020, 3(1): 1–42
https://doi.org/10.1007/s41918-019-00060-4
13 Z Bian, Z Tang, J Xie. et al.. Preparation and lithium storage performances of g-C3N4/Si nanocomposites as anode materials for lithium-ion battery. Frontiers in Energy, 2020, 14(4): 759–766
https://doi.org/10.1007/s11708-020-0810-0
14 X Shen, H Liu, X B Cheng. et al.. Beyond lithium ion batteries: Higher energy density battery systems based on lithium metal anodes. Energy Storage Materials, 2018, 12: 161–175
https://doi.org/10.1016/j.ensm.2017.12.002
15 Z Xing, J Fu, S Chen. et al.. Perspective on gallium-based room temperature liquid metal batteries. Frontiers in Energy, 2022, 16(1): 23–48
https://doi.org/10.1007/s11708-022-0815-y
16 J Xiao, Q Li, Y Bi. et al.. Understanding and applying coulombic efficiency in lithium metal batteries. Nature Energy, 2020, 5(8): 561–568
https://doi.org/10.1038/s41560-020-0648-z
17 J Shan, X Yang, C Yan. et al.. Promoting Si-graphite composite anodes with SWCNT additives for half and NCM811 full lithium ion batteries and assessment criteria from an industrial perspective. Frontiers in Energy, 2019, 13(4): 626–635
18 S Xia, X Wu, Z Zhang. et al.. Practical challenges and future perspectives of all-solid-state lithium-metal batteries. Chem, 2019, 5(4): 753–785
https://doi.org/10.1016/j.chempr.2018.11.013
19 Q Wang, B Liu, Y Shen. et al.. Confronting the challenges in lithium anodes for lithium metal batteries. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2021, 8(17): 2101111
https://doi.org/10.1002/advs.202101111
20 K Qin, K Holguin, M Mohammadiroudbari. et al.. Strategies in structure and electrolyte design for high-performance lithium metal batteries. Advanced Functional Materials, 2021, 31(15): 2009694
https://doi.org/10.1002/adfm.202009694
21 G Li. Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Advanced Energy Materials, 2021, 11(7): 2002891
https://doi.org/10.1002/aenm.202002891
22 S Wang, F Huang, S Jiao. et al.. Regulating surface chemistry of separator with LiF for advanced Li-S batteries. Frontiers in Energy, 2022, 16(4): 601–606
https://doi.org/10.1007/s11708-021-0759-7
23 M Wu, Y Li, X Liu. et al.. Perspective on solid-electrolyte interphase regulation for lithium metal batteries. SmartMat, 2021, 2(1): 5–11
https://doi.org/10.1002/smm2.1015
24 C Fu, S Shen, R Wu. et al.. Facile controlled synthesis of hierarchically structured mesoporous Li4Ti5O12/C/rGO composites as high-performance anode of lithium-ion batteries. Frontiers in Energy, 2022, 16(4): 607–612
https://doi.org/10.1007/s11708-021-0798-0
25 L W Tan, Y Sun, C L Wei. et al.. Design of robust, lithiophilic, and flexible inorganic-polymer protective layer by separator engineering enables dendrite-free lithium metal batteries with LiNi0.8Mn0.1Co0.1O2 cathode. Small, 2021, 17(13): 2007717
https://doi.org/10.1002/smll.202007717
26 L D Lin, L M Suo, Y S Hu. et al.. Epitaxial induced plating current collector lasting lifespan of anode free lithium metal battery. Advanced Energy Materials, 2021, 11(9): 2003709
https://doi.org/10.1002/aenm.202003709
27 M L Meyerson, P E Papa, A Heller. et al.. Recent developments in dendrite-free lithium-metal deposition through tailoring of micro- and nanoscale artificial coatings. ACS Nano, 2021, 15(1): 29–46
https://doi.org/10.1021/acsnano.0c05636
28 D D Wang, H D Liu, M Q Li. et al.. A long-lasting dual-function electrolyte additive for stable lithium metal batteries. Nano Energy, 2020, 75: 104889
https://doi.org/10.1016/j.nanoen.2020.104889
29 H S Wang, Z A Yu, X Kong. et al.. Dual-solvent Li-ion solvation enables high-performance Li-metal batteries. Advanced Materials, 2021, 33(25): 2008619
https://doi.org/10.1002/adma.202008619
30 F P Zhao, S H Alahakoon, K Adair. et al.. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Advanced Materials, 2021, 33(8): 2006577
https://doi.org/10.1002/adma.202006577
31 Y Yue, H Liang. 3D current collectors for lithium-ion batteries: A topical review. Small Methods, 2018, 2(8): 1800056
https://doi.org/10.1002/smtd.201800056
32 J Wang, M Wang, F Chen. et al.. In-situ construction of lithiophilic interphase in vertical micro-channels of 3D copper current collector for high performance lithium-metal batteries. Energy Storage Materials, 2021, 34: 22–27
https://doi.org/10.1016/j.ensm.2020.09.002
33 C Guo, Y Guo, R Tao. et al.. Uniform lithiophilic layers in 3D current collectors enable ultrastable solid electrolyte interphase for high-performance lithium metal batteries. Nano Energy, 2022, 96: 107121
https://doi.org/10.1016/j.nanoen.2022.107121
34 J Chen, J Zhao, L Lei. et al.. Dynamic intelligent Cu current collectors for ultrastable lithium metal anodes. Nano Letters, 2020, 20(5): 3403–3410
https://doi.org/10.1021/acs.nanolett.0c00316
35 Q Yun, Y B He, W Lv. et al.. Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 2016, 28(32): 6932–6939
https://doi.org/10.1002/adma.201601409
36 Y Yan, C Shu, R Zheng. et al.. Modulating Sand’s time by ion-transport-enhancement toward dendrite-free lithium metal anode. Nano Research, 2022, 15(4): 3150–3160
https://doi.org/10.1007/s12274-021-3872-3
37 A Nurpeissova, A Adi, A Aishova. et al.. Synergistic effect of 3D current collector structure and Ni inactive matrix on the electrochemical performances of Sn-based anodes for lithium-ion batteries. Materials Today. Energy, 2020, 16: 100397
https://doi.org/10.1016/j.mtener.2020.100397
38 J Zhang, H Chen, M Wen. et al.. Lithiophilic 3D copper-based magnetic current collector for lithium-free anode to realize deep lithium deposition. Advanced Functional Materials, 2022, 32(13): 2110110
https://doi.org/10.1002/adfm.202110110
39 Y Chen, A Elangovan, D Zeng. et al.. Vertically aligned carbon nanofibers on Cu foil as a 3D current collector for reversible Li plating/stripping toward high-performance Li–S batteries. Advanced Functional Materials, 2020, 30(4): 1906444
https://doi.org/10.1002/adfm.201906444
40 H Kwon, J H Lee, Y Roh. et al.. An electron-deficient carbon current collector for anode-free Li-metal batteries. Nature Communications, 2021, 12(1): 5537
https://doi.org/10.1038/s41467-021-25848-1
41 P Shi, X Q Zhang, X Shen. et al.. A review of composite lithium metal anode for practical applications. Advanced Materials Technologies, 2020, 5(1): 1900806
https://doi.org/10.1002/admt.201900806
42 Y Liao, L Yuan, J Xiang. et al.. Realizing both high gravimetric and volumetric capacities in Li/3D carbon composite anode. Nano Energy, 2020, 69: 104471
https://doi.org/10.1016/j.nanoen.2020.104471
43 R Zhang, X Chen, X Shen. et al.. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries. Joule, 2018, 2(4): 764–777
https://doi.org/10.1016/j.joule.2018.02.001
44 X Y Yue, X L Li, W W Wang. et al.. Wettable carbon felt framework for high loading Li-metal composite anode. Nano Energy, 2019, 60: 257–266
https://doi.org/10.1016/j.nanoen.2019.03.057
45 Y X Zhan, P Shi, X X Ma. et al.. Failure mechanism of lithiophilic sites in composite lithium metal anode under practical conditions. Advanced Energy Materials, 2022, 12(2): 2103291
https://doi.org/10.1002/aenm.202103291
46 H Song, X Chen, G Zheng. et al.. Dendrite-free composite Li anode assisted by Ag nanoparticles in a wood-derived carbon frame. ACS Applied Materials & Interfaces, 2019, 11(20): 18361–18367
https://doi.org/10.1021/acsami.9b01694
47 P Shi, X Q Zhang, X Shen. et al.. A pressure self-adaptable route for uniform lithium plating and stripping in composite anode. Advanced Functional Materials, 2021, 31(5): 2004189
https://doi.org/10.1002/adfm.202004189
48 D Pan, C Zhao, X Qi. et al.. Defect-abundant commercializable 3D carbon papers for fabricating composite Li anode with high loading and long life. Energy Storage Materials, 2022, 50: 407–416
https://doi.org/10.1016/j.ensm.2022.05.045
49 L Fan, H L Zhuang, W Zhang. et al.. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Advanced Energy Materials, 2018, 8(15): 1703360
https://doi.org/10.1002/aenm.201703360
50 Y Tang, L Zhang, J Chen. et al.. Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy & Environmental Science, 2021, 14(2): 602–642
https://doi.org/10.1039/D0EE02525A
51 M H Ryou, Y M Lee, Y Lee. et al.. Mechanical surface modification of lithium metal: Towards improved Li metal anode performance by directed Li plating. Advanced Functional Materials, 2015, 25(6): 834–841
https://doi.org/10.1002/adfm.201402953
52 J Becking, A Gröbmeyer, M Kolek. et al.. Lithium-metal foil surface modification: An effective method to improve the cycling performance of lithium-metal batteries. Advanced Materials Interfaces, 2017, 4(16): 1700166
https://doi.org/10.1002/admi.201700166
53 J Park, J Jeong, Y Lee. et al.. Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries. Advanced Materials Interfaces, 2016, 3(11): 1600140
https://doi.org/10.1002/admi.201600140
54 Y J Kim, H S Jin, D H Lee. et al.. Guided lithium deposition by surface micro-patterning of lithium-metal electrodes. ChemElectroChem, 2018, 5(21): 3169–3175
https://doi.org/10.1002/celc.201800694
55 H S Bae, I Phiri, H S Kang. et al.. Large-area surface-patterned Li metal anodes fabricated using large, flexible patterning stamps for Li metal secondary batteries. Journal of Power Sources, 2021, 514: 230553
https://doi.org/10.1016/j.jpowsour.2021.230553
56 R Xu, F Liu, Y Ye. et al.. A morphologically stable Li/electrolyte interface for all-solid-state batteries enabled by 3D-micropatterned garnet. Advanced Materials, 2021, 33(49): 2104009
https://doi.org/10.1002/adma.202104009
57 D Zhang, S Wang, B Li. et al.. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Advanced Materials, 2019, 31(33): 1901820
https://doi.org/10.1002/adma.201901820
58 X Chen, M Shang, J Niu. Inter-layer-calated thin Li metal electrode with improved battery capacity retention and dendrite suppression. Nano Letters, 2020, 20(4): 2639–2646
https://doi.org/10.1021/acs.nanolett.0c00201
59 B Li, D Zhang, Y Liu. et al.. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 2017, 39: 654–661
https://doi.org/10.1016/j.nanoen.2017.07.023
60 N Shu, J Xie, X Wang. et al.. Rolling press of lithium with carbon for high-performance anodes. Energy Storage Materials, 2020, 24: 689–693
https://doi.org/10.1016/j.ensm.2019.07.044
61 Y Zhou, X Zhang, Y Ding. et al.. Reversible deposition of lithium particles enabled by ultra-conformal and stretchable graphene film for lithium metal batteries. Advanced Materials, 2020, 32(48): 2005763
https://doi.org/10.1002/adma.202005763
62 C Luo, H Hu, T Zhang. et al.. Roll-to-roll fabrication of zero-volume-expansion lithium-composite anodes to realize high-energy-density flexible and stable lithium-metal batteries. Advanced Materials, 2022, 34(38): 2205677
https://doi.org/10.1002/adma.202205677
63 Z Liang, K Yan, G Zhou. et al.. Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Science Advance, 2019, 5(3): eaau5655
64 Y Q Chen, M Yue, C L Liu. et al.. Long cycling life lithium metal batteries enabled with upright lithium anode. Advanced Functional Materials, 2019, 29(15): 1806752
https://doi.org/10.1002/adfm.201806752
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed