Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2023, Vol. 17 Issue (4): 478-503   https://doi.org/10.1007/s11708-023-0884-6
  本期目录
A review on different theoretical models of electrocaloric effect for refrigeration
Cancan SHAO1, A. A. AMIROV2, Houbing HUANG1()
1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
2. Amirkhanov Institute of Physics Daghestan Scientific Center, Russian Academy of Sciences, Makhachkala 367003, Russia
 全文: PDF(2834 KB)   HTML
Abstract

The performance parameters for characterizing the electrocaloric effect are isothermal entropy change and the adiabatic temperature change, respectively. This paper reviews the electrocaloric effect of ferroelectric materials based on different theoretical models. First, it provides four different calculation scales (the first-principle-based effective Hamiltonian, the Landau-Devonshire thermodynamic theory, phase-field simulation, and finite element analysis) to explain the basic theory of calculating the electrocaloric effect. Then, it comprehensively reviews the recent progress of these methods in regulating the electrocaloric effect and the generation mechanism of the electrocaloric effect. Finally, it summarizes and anticipates the exploration of more novel electrocaloric materials based on the framework constructed by the different computational methods.

Key wordselectrocaloric effect    effective Hamiltonian    phase-field modeling    different theoretical models
收稿日期: 2023-01-18      出版日期: 2023-08-29
Corresponding Author(s): Houbing HUANG   
 引用本文:   
. [J]. Frontiers in Energy, 2023, 17(4): 478-503.
Cancan SHAO, A. A. AMIROV, Houbing HUANG. A review on different theoretical models of electrocaloric effect for refrigeration. Front. Energy, 2023, 17(4): 478-503.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-023-0884-6
https://academic.hep.com.cn/fie/CN/Y2023/V17/I4/478
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Materials Domain transitions T/K ΔT/K ΔE/(MV?m−1) ΔTΔE/(K?m?MV−1) Ref.
PTO TFs 180° domain 300 6.2 26 0.238 [140]
−7.4 0.285
PbZr0.2Ti0.8O3 TFs 90° domain to monodoain 300 −4.3 −100 0.043 [139]
BIT NPs Different monodomain 753 −1.5 20 0.075 [141]
480 −10.21 ~26.1 ~0.391
358 −7.55 ~39.2 ~0.193
PST 50/0 TFs Needle to vortex 318 7.86 5 1.572 [143]
PST/STO superlattice Vortex to monodomain ~464 −8.25 ~4.25 ~1.94 [144]
PTO TFs 90° charged domain walls 300 2.03 10.4 0.195 [145]
Tab.1  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
1 J J Wang, B Wang, L Q Chen. Understanding, predicting, and designing ferroelectric domain structures and switching guided by the phase-field method. Annual Review of Materials Research, 2019, 49(1): 127–152
https://doi.org/10.1146/annurev-matsci-070218-121843
2 Z KutnjakB RožičR Pirc, et al.. Electrocaloric effect: Theory, measurements, and applications. In: Webster J G, ed. Wiley Encyclopedia of Electrical and Electronics Engineering. John Wiley & Sons, Inc., 2015
3 J Shi, D Han, Z Li. et al.. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200–1225
https://doi.org/10.1016/j.joule.2019.03.021
4 T CorreiaQ Zhang. Electrocaloric effect: An introduction. In: Correia T, Zhang Q, eds. Electrocaloric Materials. Engineering Materials. Berlin, Springer, 2014
5 S GunnarP OlegG Gerald. Electrocaloric cooling. In: Orhan E, ed. Refrigeration. IntechOpen, 2017
6 S G Lu, Q M Zhang. Electrocaloric materials for solid-state refrigeration. Advanced Materials, 2009, 21(19): 1983–1987
https://doi.org/10.1002/adma.200802902
7 H Granicher. Induzierte Ferroelektrizitat von SrTiO3 bei sehr tiefen temperatur und uber dieKalterzeugung durch adiabatic Entpolarisierung. 1956
8 E Hegenbarth. Studies of the electrocaloric effect of ferroelectric ceramics at low temperatures. Cryogenics, 1961, 1(4): 242–243
https://doi.org/10.1016/S0011-2275(61)80015-5
9 P KobekoJ Kurtschatov. Dielektrische Eigenschaften der Seignettesalzkristalle. 1930
10 G G Wiseman, J K Kuebler. Electrocaloric effect in ferroelectric rochelle salt. Physical Review, 1963, 131(5): 2023–2027
https://doi.org/10.1103/PhysRev.131.2023
11 J F Scott. Electrocaloric materials. Annual Review of Materials Research, 2011, 41(1): 229–240
https://doi.org/10.1146/annurev-matsci-062910-100341
12 A S Mischenko, Q Zhang, J F Scott. et al.. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2010, 37(23): 1270–1271
https://doi.org/10.1126/science.1123811
13 B Neese, B Chu, S G Lu. et al.. Large electrocaloric effect in ferroelectric polymers near room temperature. Science, 2008, 321(5890): 821–823
https://doi.org/10.1126/science.1159655
14 X Moya, E Stern-Taulats, S Crossley. et al.. Giant electrocaloric strength in single-crystal BaTiO3. Advanced Materials, 2013, 25(9): 1360–1365
https://doi.org/10.1002/adma.201203823
15 A Torelló, P Lheritier, T Usui. et al.. Giant temperature span in electrocaloric regenerator. Science, 2020, 370(6512): 125–129
https://doi.org/10.1126/science.abb8045
16 G SuchaneckG Gerlach. Thin films for electrocaloric cooling devices. In: Kumar S, Aswal D, eds. Recent Advances in Thin Films. Materials Horizons: From Nature to Nanomaterials. Singapore: Springer, 2020
17 H Aziguli, X Chen, Y Liu. et al.. Enhanced electrocaloric effect in lead-free organic and inorganic relaxor ferroelectric composites near room temperature. Applied Physics Letters, 2018, 112(19): 193902
https://doi.org/10.1063/1.5028459
18 H CuiW He Q B Pei, et al.. Electrocaloric effects in ferroelectric polymers. In: Kamal A, ed. Organic Ferroelectric Materials and Applications. Woodhead Publishing, 2022
19 M Ožbolt, A Kitanovski, J Tušek. et al.. Electrocaloric refrigeration: Thermodynamics, state of the art and future perspectives. International Journal of Refrigeration, 2014, 40: 174–188
https://doi.org/10.1016/j.ijrefrig.2013.11.007
20 H Honmi, Y Hashizume, T Nakajima. et al.. Thermodynamic analysis of a cooling system using electrocaloric effect. Japanese Journal of Applied Physics, 2017, 56(S10): 10PC09
https://doi.org/10.7567/JJAP.56.10PC09
21 A Greco, C Masselli. Electrocaloric cooling: A review of the thermodynamic cycles, materials, models, and devices. Magnetochemistry (Basel, Switzerland), 2020, 6(4): 67
https://doi.org/10.3390/magnetochemistry6040067
22 Y B MaK AlbeB X Xu. Monte Carlo simulations of the electrocaloric effect in relaxor ferroelectrics. In: Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), Singapore, 2015
23 Y B Ma, K Albe, B X Xu. Lattice-based Monte Carlo simulations of the electrocaloric effect in ferroelectrics and relaxor ferroelectrics. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(18): 184108
https://doi.org/10.1103/PhysRevB.91.184108
24 S P Beckman, L F Wan, J A Barr. et al.. Effective Hamiltonian methods for predicting the electrocaloric behavior of BaTiO3. Materials Letters, 2012, 89(25): 254–257
https://doi.org/10.1016/j.matlet.2012.08.102
25 M Tarnaoui, M Zaim, M Kerouad. et al.. First-principles effective Hamiltonian calculations of the electrocaloric effect in ferroelectric BaxSr1–xTiO3. Physics Letters, 2020, 384(4): 126093
https://doi.org/10.1016/j.physleta.2019.126093
26 J A Barr, S P Beckman. Electrocaloric response of KNbO3 from a first-principles effective Hamiltonian. Materials Science and Engineering B, 2015, 196: 40–43
https://doi.org/10.1016/j.mseb.2015.02.004
27 P Ghosez, J Junquera. Modeling of ferroelectric oxide perovskites: From first to second principles. Annual Review of Condensed Matter Physics, 2022, 13(1): 325–364
https://doi.org/10.1146/annurev-conmatphys-040220-045528
28 J Y Lee, A K Soh, H T Chen. et al.. Phase-field modeling of the influence of domain structures on the electrocaloric effects in PbTiO3 thin films. Journal of Materials Science, 2015, 50(3): 1382–1393
https://doi.org/10.1007/s10853-014-8698-x
29 J Zhu, H Chen, X Hou. et al.. Phase-field simulations on the electrocaloric properties of ferroelectric nanocylinders with the consideration of surface polarization effect. Journal of Applied Physics, 2019, 125(23): 234101
https://doi.org/10.1063/1.5093554
30 R Z Gao, X M Shi, J Wang. et al.. Understanding electrocaloric cooling of ferroelectrics guided by phase-field modeling. Journal of the American Ceramic Society, 2022, 105(6): 3689–3714
https://doi.org/10.1111/jace.18370
31 D Guo, J Gao, Y J Yu. et al.. Design and modeling of a fluid-based micro-scale electrocaloric refrigeration system. International Journal of Heat and Mass Transfer, 2014, 72: 559–564
https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.043
32 R Liebschner, G Gerlad. 3D-FEM simulation of a MEMS-based electrocaloric Ba(Zr0.2Ti0.8)O3 thin-film microfluidic refrigeration device. Energy Technology: Generation, Conversion, Storage, Distribution, 2018, 6(8): 1553–1559
https://doi.org/10.1002/ente.201800257
33 J Shi, Q Li, T Gao. et al.. Numerical evaluation of a kilowatt-level rotary electrocaloric refrigeration system. International Journal of Refrigeration, 2020, 121: 279–288
https://doi.org/10.1016/j.ijrefrig.2020.09.011
34 A Torelló, E Defay. Electrocaloric coolers: A review. Advanced Electronic Materials, 2022, 8(6): 2101031
https://doi.org/10.1002/aelm.202101031
35 A Kumar, A Thakre, D Y Jeong. et al.. Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(23): 6836–6859
https://doi.org/10.1039/C9TC01525F
36 X Moya, S Kar-Narayan, N Mathur. Caloric materials near ferroic phase transitions. Nature Materials, 2014, 13(5): 439–450
https://doi.org/10.1038/nmat3951
37 H He, X Lu, E Hanc. et al.. Advances in lead-free pyroelectric materials: A comprehensive review. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2020, 8(5): 1494–1516
https://doi.org/10.1039/C9TC05222D
38 M Valant. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science, 2012, 57(6): 980–1009
https://doi.org/10.1016/j.pmatsci.2012.02.001
39 C Aprea, A Greco, C Masselli. et al.. A review of the state of the art of the solid-state caloric cooling processes at room-temperature before. International Journal of Refrigeration, 2019, 106: 66–88
https://doi.org/10.1016/j.ijrefrig.2019.06.034
40 Y Meng, J H Pu, Q B Pei. Electrocaloric cooling over high device temperature span. Joule, 2021, 5(4): 780–793
https://doi.org/10.1016/j.joule.2020.12.018
41 B Völker, P Marton, C Elsässer. et al.. Multiscale modeling for ferroelectric materials: A transition from the atomic level to phase-field modeling. Continuum Mechanics and Thermodynamics, 2011, 23(5): 435–451
https://doi.org/10.1007/s00161-011-0188-7
42 B Völker, C M Landis, M Kamlah. Multiscale modeling for ferroelectric materials: Identification of the phase-field model’s free energy for PZT from atomistic simulations. Smart Materials and Structures, 2012, 21(3): 035025
https://doi.org/10.1088/0964-1726/21/3/035025
43 J Zhang, X Hou, Y Zhang. et al.. Electrocaloric effect in ferroelectric materials: From phase field to first-principles based effective Hamiltonian modeling. Materials Reports: Energy, 2021, 1(3): 100050
https://doi.org/10.1016/j.matre.2021.100050
44 W KohnL Sham. Self-consistent equations including exchange and correlation effects. Physical Review, 1965, 140(4A): A1133
45 P Hohenberg, W Kohn. Inhomogeneous electron gas. Physical Review, 1964, 136(3B): B864–B871
https://doi.org/10.1103/PhysRev.136.B864
46 W Zhong, D Vanderbilt, K M Rabe. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. Ferroelectrics, 1998, 206(9): 181–204
https://doi.org/10.1103/PhysRevB.52.6301
47 W Zhong, D Vanderbilt, K M Rabe. Phase transitions in BaTiO3 from first principles. Physical Review Letters, 1994, 73(13): 1861–1864
https://doi.org/10.1103/PhysRevLett.73.1861
48 S Tinte, M G Stachiotti, M Sepliarsky. et al.. Atomistic modeling of BaTiO3 based on first-principles calculations. Journal of Physics Condensed Matter, 1999, 11(48): 9679–9690
https://doi.org/10.1088/0953-8984/11/48/325
49 R Migoni. Lattice dynamics of BaTiO3 in the cubic phase. Journal of Physics Condensed Matter, 2010, 405(19): 4226–4230
https://doi.org/10.1088/0953-8984/1/49/002
50 B G Dick, A W Overhauser. Theory of the dielectric constants of alkali halide crystals. Physical Review, 1958, 112(1): 90–103
https://doi.org/10.1103/PhysRev.112.90
51 N W Thomas. A bond-valence approach to one-dimensional ferroelectrics. Ferroelectrics, 1989, 100(1): 77–100
https://doi.org/10.1080/00150198908007902
52 I D Brown. Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 2009, 109(12): 6858–6919
https://doi.org/10.1021/cr900053k
53 L Bellaiche, A García, D Vanderbilt. Finite-temperature properties of Pb(Zr1–xTix)O3 alloys from first principles. Physical Review Letters, 2000, 84(23): 5427–5430
https://doi.org/10.1103/PhysRevLett.84.5427
54 L Walizer, S Lisenkov, L Bellaiche. Finite-temperature properties of (Ba, Sr)TiO3 systems from atomistic simulations. Physical Review. B, 2006, 299(14): G1128–G1138
https://doi.org/10.1103/PhysRevB.73.144105
55 L Bellaiche, A García, D Vanderbilt. Low-temperature properties of Pb(Zr1−xTix)O3 solid solutions near the morphotropic phase boundary. Ferroelectrics, 2002, 266(1): 41–56
https://doi.org/10.1080/00150190211456
56 R D King-Smith, D Vanderbilt. First-principles investigation of ferroelectricity in perovskite compounds. Physical Review B: Condensed Matter, 1994, 49(9): 5828–5844
https://doi.org/10.1103/PhysRevB.49.5828
57 I A Kornev, L Bellaiche, P E Janolin. et al.. Phase diagram of Pb(Zr,Ti)O3 solid solutions from first-principles. Physical Review Letters, 2006, 97(15): 157601
https://doi.org/10.1103/PhysRevLett.97.157601
58 I A Kornev, S Lisenkov, R Haumont. et al.. Finite-temperature properties of multiferroic BiFeO3. Physical Review Letters, 2007, 99(22): 227602
https://doi.org/10.1103/PhysRevLett.99.227602
59 S Bhattacharjee, D Rahmedov, D W Wang. et al.. Ultrafast switching of the electric polarization and magnetic chirality in BiFeO3 by an electric field. Physical Review Letters, 2014, 112(14): 147601
https://doi.org/10.1103/PhysRevLett.112.147601
60 J Íñiguez, D Vanderbilt. First-principle study of the temperature-pressure phase diagram of BaTiO3. Physical Review Letters, 2002, 89(11): 115503
https://doi.org/10.1103/PhysRevLett.89.115503
61 I A Kornev, S Lisenkov, R Haumont. et al.. Finite-temperature properties of multiferroic BiFeO3. Physical Review Letters, 2007, 99(22): 227602
https://doi.org/10.1103/PhysRevLett.99.227602
62 M E Lines, A M Glass, G Burns. Principles and applications of ferroelectrics and related materials. Physics Today, 1978, 31(9): 56–58
https://doi.org/10.1063/1.2995188
63 S Zhong, Z G Ban, S P Alpay. et al.. Large piezoelectric strains from polarization graded ferroelectrics. Applied Physics Letters, 2006, 89(14): 142913
https://doi.org/10.1063/1.2358963
64 B K Mani, S Lisenkov, I Ponomareva. Finite-temperature properties of antiferroelectric PbZrO3 from atomistic simulations. Physical Review B: Condensed Matter and Materials Physics, 2015, 91(13): 134112
https://doi.org/10.1103/PhysRevB.91.134112
65 Y Yang, B Xu, C S Xu. et al.. Understanding and revisiting the most complex perovskite system via atomistic simulations. Physical Review. B, 2018, 97(17): 174106
https://doi.org/10.1103/PhysRevB.97.174106
66 L Bellaiche, D Vanderbilt. Virtual crystal approximation revisited: Application to dielectric and piezoelectric properties of perovskites. Physical Review B, 2000, 61: 7877
https://doi.org/10.1103/PhysRevB.61.7877
67 N J Ramer, A M Rappe. Application of a new virtual crystal approach for the study of disordered perovskites. Journal of Physics and Chemistry of Solids, 2000, 61(2): 315–320
https://doi.org/10.1016/S0022-3697(99)00300-5
68 D C Rapaport. The art of molecular dynamics simulation. Computers in Physics, 1995, 10: 456
https://doi.org/10.1063/1.4822471
69 B K Mani, C M Chang, I Ponomareva. Atomistic study of soft-mode dynamics in PbTiO3. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(6): 064306
https://doi.org/10.1103/PhysRevB.88.064306
70 S Prosandeev, I Ponomareva, I Naumov. et al.. Original properties of dipole vortices in zero-dimensional ferroelectrics. Journal of Physics Condensed Matter, 2008, 20(19): 193201
https://doi.org/10.1088/0953-8984/20/19/193201
71 A F Devonshire. Theory of ferroelectrics. Advances in Physics, 1954, 3(10): 85–130
https://doi.org/10.1080/00018735400101173
72 W Thomson. On the thermoelastic, thermomagnetic, and pyroelectric properties of matter. London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1878, 5(28): 4–27
https://doi.org/10.1080/14786447808639378
73 B Rožič, M Kosec, H Uršič. et al.. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics. Journal of Applied Physics, 2011, 110(6): 519
https://doi.org/10.1063/1.3641975
74 Y Liu, J Wei, P E Janolin. et al.. Prediction of giant elastocaloric strength and stress-mediated electrocaloric effect in BaTiO3 single crystals. Physical Review B: Condensed Matter and Materials Physics, 2014, 90(10): 104107
https://doi.org/10.1103/PhysRevB.90.104107
75 H H Wu, J M Zhu, T Y Zhang. Double hysteresis loops and large negative and positive electrocaloric effects in tetragonal ferroelectrics. Physical Chemistry Chemical Physics, 2015, 17(37): 23897–23908
https://doi.org/10.1039/C5CP02765A
76 H H Wu, J Zhu, T Y Zhang. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419–427
https://doi.org/10.1016/j.nanoen.2015.06.030
77 J Peräntie, J Hagberg, A Uusimäki. et al.. Electric-field-induced dielectric and temperature changes in a ⟨011⟩-oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(13): 134119
https://doi.org/10.1103/PhysRevB.82.134119
78 W P Geng, L Yang, L Bellaiche. et al.. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Advanced Materials (Deerfield Beach, Fla.), 2015, 27(20): 3165–3169
https://doi.org/10.1002/adma.201501100
79 S G Lu, X G Tang, S H Wu. et al.. Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 2014, 29(1): 6–12
https://doi.org/10.3724/SP.J.1077.2014.13310
80 S G Lu, B Rozic, Q M Zhang. et al.. Electrocaloric effect in ferroelectric polymers. Applied Physics. A, Materials Science & Processing, 2012, 107(3): 559–566
https://doi.org/10.1007/s00339-012-6830-9
81 R Pirc, Z Kutnjak, R Blinc. et al.. Electrocaloric effect in relaxor ferroelectrics. Journal of Applied Physics, 2011, 110(7): 074113
https://doi.org/10.1063/1.3650906
82 E V Colla, N Jurik, Y Liu. et al.. Kinetics and thermodynamics of the ferroelectric transitions in PbMg1/3Nb2/3O3 and PbMg1/3Nb2/3O3-12% PbTiO3 crystals. Journal of Applied Physics, 2013, 113(18): 184104
https://doi.org/10.1063/1.4804069
83 L Luo, M Dietze, C H Solterbeck. et al.. Orientation and phase transition dependence of the electrocaloric effect in 0.71PbMg1/3Nb2/3O3-0.29PbTiO3 single crystal. Applied Physics Letters, 2012, 101(6): 062907
https://doi.org/10.1063/1.4745185
84 B L Peng, Q Zhang, B Gang. et al.. Phase-transition induced giant negative electrocaloric effect in a lead-free relaxor ferroelectric thin film. Energy & Environmental Science, 2019, 12(5): 1708–1717
https://doi.org/10.1039/C9EE00269C
85 L Q Chen, Y H Zhao. From classical thermodynamics to phase-field method. Progress in Materials Science, 2022, 124: 100868
https://doi.org/10.1016/j.pmatsci.2021.100868
86 L Q Chen. Phase-field models for microstructure evolution. Annual Review of Materials Research, 2002, 32(1): 113–140
https://doi.org/10.1146/annurev.matsci.32.112001.132041
87 S Wu, J Sheng, C Yang. et al.. Phase-field model of hydride blister growth kinetics on zirconium surface. Frontiers in Materials, 2022, 9: 916593
https://doi.org/10.3389/fmats.2022.916593
88 M Liu, J Wang. Giant electrocaloric effect in ferroelectric nanotubes near room temperature. Scientific Reports, 2015, 5(1): 7728
https://doi.org/10.1038/srep07728
89 M J Haun, E Furman, S J Jang. et al.. Thermodynamic theory of PbTiO3. Journal of Applied Physics, 1987, 62(8): 3331–3338
https://doi.org/10.1063/1.339293
90 X Chen, S Li, X Jian. et al.. Maxwell relation, giant (negative) electrocaloric effect, and polarization hysteresis. Applied Physics Letters, 2021, 118(12): 122904
https://doi.org/10.1063/5.0042333
91 R Z Gao, X M Shi, J Wang. et al.. Designed giant room-temperature electrocaloric effects in metal-free organic perovskite [MDABCO](NH4)I3 by phase-field simulations. Advanced Functional Materials, 2021, 31(38): 2104393
https://doi.org/10.1002/adfm.202104393
92 G Sebald, L Seveyrat, J F Capsal. et al.. Differential scanning calorimeter and infrared imaging for electrocaloric characterization of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer. Applied Physics Letters, 2012, 101(2): 022907
https://doi.org/10.1063/1.4734924
93 X Li, X S Qian, S G Lu. et al.. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene terpolymer. Applied Physics Letters, 2011, 99(5): 052907
https://doi.org/10.1063/1.3624533
94 Y L Li, L Q Chen. Temperature-strain phase diagram for BaTiO3 thin films. Applied Physics Letters, 2006, 88(7): 072905
https://doi.org/10.1063/1.2172744
95 Y Bai, K Ding, G P Zheng. et al.. Entropy-change measurement of electrocaloric effect of BaTiO3 single crystal. Physica Status Solidi. A, Applications and Materials Science, 2012, 209(5): 941–944
https://doi.org/10.1002/pssa.201127695
96 X S Qian, H J Ye, Y T Zhang. et al.. Giant electrocaloric response over a broad temperature range in modified BaTiO3 ceramics. Advanced Functional Materials, 2014, 24(9): 1300–1305
https://doi.org/10.1002/adfm.201302386
97 G Akcay, S P Alpay, J V Mantese. et al.. Magnitude of the intrinsic electrocaloric effect in ferroelectric perovskite thin films at high electric fields. Applied Physics Letters, 2007, 90(25): 252909
https://doi.org/10.1063/1.2750546
98 Z Li, J Li, H H Wu. et al.. Effect of electric field orientation on ferroelectric phase transition and electrocaloric effect. Acta Materialia, 2020, 191: 13–23
https://doi.org/10.1016/j.actamat.2020.03.020
99 A Okazaki, M Kawaminami. Lattice constant of strontium titanate at low temperatures. Materials Research Bulletin, 1973, 8(5): 545–550
https://doi.org/10.1016/0025-5408(73)90130-X
100 T Nishimatsu, M Iwamoto, Y Kawazoe. et al.. First-principles accurate total-energy surfaces for polar structural distortions of BaTiO3, PbTiO3, and SrTiO3: Consequences to structural transition temperatures. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(13): 134106
https://doi.org/10.1103/PhysRevB.82.134106
101 C H Liu, W Si, C Wu. et al.. The ignored effects of vibrational entropy and electrocaloric effect in PbTiO3 and PbZr0.5Ti0.5O3 as studied through first-principles calculation. Acta Materialia, 2020, 191(1): 221–229
https://doi.org/10.1016/j.actamat.2020.03.059
102 S Lisenkov, B K Mani, C M Chang. et al.. Multicaloric effect in ferroelectric PbTiO3 from first principles. Physical Review B: Condensed Matter and Materials Physics, 2013, 87(22): 224101
https://doi.org/10.1103/PhysRevB.87.224101
103 E A Mikhaleva, I N Flerov, M V Gorev. et al.. Caloric characteristics of PbTiO3 in the temperature range of the ferroelectric phase transition. Physics of the Solid State, 2012, 54(9): 1832–1840
https://doi.org/10.1134/S1063783412090181
104 X W Zeng, R E Cohen. Thermo-electromechanical response of a ferroelectric perovskite from molecular dynamics simulations. Applied Physics Letters, 2011, 99(14): 142902
https://doi.org/10.1063/1.3646377
105 N Sai, K M Rabe, D Vanderbilt. Theory of structural response to macroscopic electric fields in ferroelectric systems. Physical Review B: Condensed Matter, 2002, 66(10): 104108
https://doi.org/10.1103/PhysRevB.66.104108
106 Z Pan, P Wang, X Hou. et al.. Fatigue-free aurivillius phase ferroelectric thin films with ultrahigh energy storage performance. Advanced Energy Materials, 2020, 10: 2001536
https://doi.org/10.1002/aenm.202001536
107 S Wang, M Yi, B X Xu. A phase-field model of relaxor ferroelectrics based on random field theory. International Journal of Solids and Structures, 2016, 83: 142–153
https://doi.org/10.1016/j.ijsolstr.2016.01.007
108 S Lisenkov, B Mani, E Glazkova. et al.. Scaling law for electrocaloric temperature change in antiferroelectrics. Scientific Reports, 2016, 6(1): 19590
https://doi.org/10.1038/srep19590
109 E Glazkova-Swedberg, J Cuozzo, S Lisenkov. et al.. Electrocaloric effect in PbZrO3 thin films with antiferroelectric-ferroelectric phase competition. Computational Materials Science, 2017, 129: 44–48
https://doi.org/10.1016/j.commatsci.2016.12.002
110 M Kingsland, S Lisenkov, I Ponomareva. Unveiling electrocaloric potential of antiferroelectrics with phase competition. Advanced Theory and Simulations, 2018, 1(11): 1800096
https://doi.org/10.1002/adts.201800096
111 K Xu, X M Shi, S Z Dong. et al.. Antiferroelectric phase diagram enhancing energy-storage performance by phase-field simulations. ACS Applied Materials & Interfaces, 2022, 14(22): 25770–25780
https://doi.org/10.1021/acsami.2c05168
112 X Tan, C Ma, J Frederick. et al.. The antiferroelectric ↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. Journal of the American Ceramic Society, 2011, 94(12): 4091–4107
https://doi.org/10.1111/j.1551-2916.2011.04917.x
113 N T Liu, R H Liang, G Z Zhang. et al.. Colossal negative electrocaloric effects in lead-free bismuth ferrite-based bulk ferroelectric perovskite for solid-state refrigeration. Journal of Materials Chemistry. C, 2018, 6: 10415–10421
https://doi.org/10.1039/C8TC04125C
114 P Ayyub, S Chattopadhyay, R Pinto. et al.. Ferroelectric behavior in thin films of antiferroelectric materials. Physical Review B: Condensed Matter, 1998, 57(10): R5559–R5562
https://doi.org/10.1103/PhysRevB.57.R5559
115 T Nishimatsu, J A Barr, S P Beckman. Direct molecular dynamics simulation of electrocaloric effect in BaTiO3. Journal of the Physical Society of Japan, 2013, 82(11): 114605
https://doi.org/10.7566/JPSJ.82.114605
116 B Rožič, B Malič, H Uršič. et al.. Direct measurements of the giant electrocaloric effect in soft and solid ferroelectric materials. Ferroelectrics, 2010, 405(1): 26–31
https://doi.org/10.1080/00150193.2010.482884
117 J T Zhang, X Hou, J Wang. Direct and indirect methods based on effective Hamilton for electrocaloric effect of BaTiO3 nanoparticle. Journal of Physics: Condensed Matter, 2019, 31: 255402
https://doi.org/10.1088/1361-648X/ab119b
118 M Marathe, A Grünebohm, T Nishimatsu. et al.. First principles-based calculation of the electrocaloric effect in BaTiO3: A comparison of direct and indirect methods. Physical Review. B, 2016, 93(5): 054110
https://doi.org/10.1103/PhysRevB.93.054110
119 A F Joffé. Mechanical and electrical strength and cohesion. Transactions of the Faraday Society, 1928, 24: 65–72
https://doi.org/10.1039/TF9282400065
120 J Junquera, P Ghosez. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003, 422(6931): 506–509
https://doi.org/10.1038/nature01501
121 E Glazkova, C M Chang, S Lisenkov. et al.. Depolarizing field in ultrathin electrocalorics. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(6): 064101
https://doi.org/10.1103/PhysRevB.92.064101
122 S Bin-Omran, I Kornev, I Ponomareva. et al.. Diffuse phase transition in ferroelectric ultrathin films from first principles. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(9): 094119
https://doi.org/10.1103/PhysRevB.81.094119
123 B K Mani, C M Chang, S Lisenkov. et al.. Critical thickness for antiferroelectricity in PbZrO3. Physical Review Letters, 2015, 115(9): 097601
https://doi.org/10.1103/PhysRevLett.115.097601
124 I Ponomareva, I I Naumov, I Kornev. et al.. Atomistic treatment of depolarizing energy and field in ferroelectric nanostructures. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(14): 140102
https://doi.org/10.1103/PhysRevB.72.140102
125 H Fu, L Bellaiche. Ferroelectricity in barium titanate quantum dots and wires. Physical Review Letters, 2003, 91(25): 257601
https://doi.org/10.1103/PhysRevLett.91.257601
126 D Liu, J Wang, H M Jafri. et al.. Phase-field simulations of vortex chirality manipulation in ferroelectric thin films. npj Quantum Materials, 2022, 7: 34
https://doi.org/10.1038/s41535-022-00444-8
127 W X Zhu, X M Shi, R Z Gao. et al.. Enhancing the elastocaloric strength by combining positive and negative elastocaloric effects. Physica Status Solidi. Rapid Research Letters, 2022, 16(8): 2200183
https://doi.org/10.1002/pssr.202200183
128 S Bin-Omran. The influence of mechanical and electrical boundary conditions on electrocaloric response in (Ba0.50Sr0.50)TiO3 thin films. Materials Research Bulletin, 2017, 95: 334–338
https://doi.org/10.1016/j.materresbull.2017.07.049
129 J Wang, M Kamlah. Effect of electrical boundary conditions on the polarization distribution around a crack embedded in a ferroelectric single domain. Engineering Fracture Mechanics, 2010, 77(18): 3658–3669
https://doi.org/10.1016/j.engfracmech.2010.07.007
130 Y L Li, S Y Hu, Z K Liu. et al.. Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Applied Physics Letters, 2002, 81(3): 427–429
https://doi.org/10.1063/1.1492025
131 M Marathe, C Ederer. Electrocaloric effect in BaTiO3: A first-principles-based study on the effect of misfit strain. Applied Physics Letters, 2014, 104(21): 212902
https://doi.org/10.1063/1.4879840
132 G Akcay, S P Alpay, G A Jr Rossetti. et al.. Influence of mechanical boundary conditions on the electrocaloric properties of ferroelectric thin films. Journal of Applied Physics, 2008, 103(2): 024104
https://doi.org/10.1063/1.2831222
133 J Wang, J Ma, H B Huang. et al.. Ferroelectric domain-wall logic units. Nature Communications, 2022, 13(1): 3255
https://doi.org/10.1038/s41467-022-30983-4
134 J Zhang, A A Heitmann, S P Alpay. et al.. Electrothermal properties of perovskite ferroelectric films. Journal of Materials Science, 2009, 44(19): 5263–5273
https://doi.org/10.1007/s10853-009-3559-8
135 J Qiu, Q Jiang. Effect of misfit strain on the electrocaloric effect in epitaxial SrTiO3 thin films. European Physical Journal B, 2009, 71(1): 15–19
https://doi.org/10.1140/epjb/e2009-00260-x
136 J Karthik, L W Martin. Effect of domain walls on the electrocaloric properties of Pb(Zr1–xTix)O3 thin films. Applied Physics Letters, 2011, 99(3): 032904
https://doi.org/10.1063/1.3614453
137 J J Wang, D Fortino, B Wang. et al.. Extraordinarily large electrocaloric strength of metal-free perovskites. Advanced Materials, 2020, 32(7): 1906224
https://doi.org/10.1002/adma.201906224
138 B Li, J B Wang, X L Zhong. et al.. Room temperature electrocaloric effect on PbZr0.8Ti0.2O3 thin film. Journal of Applied Physics, 2010, 107(1): 014109
https://doi.org/10.1063/1.3280031
139 F Wang, B Li, Y Ou. et al.. Multicaloric effects in PbZr0.2Ti0.8O3 thin films with 90° domain structure. Europhysics Letters, 2017, 118(1): 17005
https://doi.org/10.1209/0295-5075/118/17005
140 B Li, J B Wang, X L Zhong. et al.. The coexistence of the negative and positive electrocaloric effect in ferroelectric thin films for solid-state refrigeration. Europhysics Letters, 2013, 102(4): 47004
https://doi.org/10.1209/0295-5075/102/47004
141 F Wang, B Li, Y Ou. et al.. A stress-mediated negative/positive electrocaloric effect in Bi4Ti3O12 nanoparticles. Materials Letters, 2017, 196: 179–182
https://doi.org/10.1016/j.matlet.2017.03.037
142 C Huang, H B Yang, C F Gao. Giant electrocaloric effect in a cracked ferroelectric. Journal of Applied Physics, 2018, 123(15): 154102
https://doi.org/10.1063/1.5004203
143 L Van Lich, X Hou, M H Phan. et al.. Electrocaloric effect enhancement in compositionally graded ferroelectric thin films driven by a needle-to-vortex domain structure transition. Journal of Physics. D, Applied Physics, 2021, 54(25): 255307
https://doi.org/10.1088/1361-6463/abf0ed
144 Y Ji, W J Chen, Y Zheng. The emergence of tunable negative electrocaloric effect in ferroelectric/paraelectric superlattices. Journal of Physics. D, Applied Physics, 2020, 53(50): 505302
https://doi.org/10.1088/1361-6463/abb271
145 D Huang, J B Wang, B Li. et al.. Influence of 90° charged domain walls on the electrocaloric effect in PbTiO3 ferroelectric thin films. Journal of Applied Physics, 2016, 120(21): 214105
https://doi.org/10.1063/1.4971400
146 J Wang, M Liu, Y Zhang. et al.. Large electrocaloric effect induced by the multi-domain to mono-domain transition in ferroelectrics. Journal of Applied Physics, 2014, 115(16): 164102
https://doi.org/10.1063/1.4873112
147 X Hou, H P Wu, H Y Li. et al.. Giant negative electrocaloric effect induced by domain transition in the strained ferroelectric thin film. Journal of Physics: Condensed Matter, 2018, 30(46): 465401
https://doi.org/10.1088/1361-648X/aae602
148 B Li, J B Wang, X L Zhong. et al.. Giant electrocaloric effects in ferroelectric nanostructures with vortex domain structures. RSC Advances, 2013, 3: 7928–7932
https://doi.org/10.1039/c3ra41252k
149 Y K Zeng, B Li, J B Wang. et al.. Influence of vortex domain switching on the electrocaloric property of a ferroelectric nanoparticle. RSC Advances, 2014, 4(57): 30211–30214
https://doi.org/10.1039/C4RA02878C
150 C Ye, J B Wang, B Li. et al.. Giant electrocaloric effect in a wide temperature range in PbTiO3 nanoparticle with double-vortex domain structure. Scientific Reports, 2018, 8(1): 293
https://doi.org/10.1038/s41598-017-18275-0
151 L Van Lich, N L Vu, M T Ha. et al.. Enhancement of electrocaloric effect in compositionally graded ferroelectric nanowires. Journal of Applied Physics, 2020, 127(21): 214103
https://doi.org/10.1063/1.5145040
152 B Li, J B Wang, X L Zhong. et al.. Domain wall contribution to the electrocaloric effect in BaTiO3 nanoparticle: A phase-field investigation. Journal of Nanoparticle Research, 2013, 15(2): 1427
https://doi.org/10.1007/s11051-013-1427-6
153 T Sluka, A Tagantsev, D Damjanovic. et al.. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nature Communications, 2012, 3(1): 748
https://doi.org/10.1038/ncomms1751
154 P Ondrejkovic, P Marton, M Guennou. et al.. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls. Physical Review B: Condensed Matter and Materials Physics, 2013, 88(2): 024114
https://doi.org/10.1103/PhysRevB.88.024114
155 X Hou, X Li, J Zhang. et al.. Effect of grain size on the electrocaloric properties of polycrystalline ferroelectrics. Physical Review Applied, 2021, 15(5): 054019
https://doi.org/10.1103/PhysRevApplied.15.054019
156 X Chen, C Fang. Study of electrocaloric effect in barium titanate nanoparticle with core-shell model. Physica B: Condensed Matter, 2013, 415: 14–17
https://doi.org/10.1016/j.physb.2013.01.033
157 J H Qiu, Q Jiang. Grain size effect on the electrocaloric effect of dense BaTiO3 nanoceramics. Journal of Applied Physics, 2009, 105(3): 034110
https://doi.org/10.1063/1.3063811
158 A N Morozovska, E A Eliseev, M D Glinchuk. et al.. Analytical description of the size effect on pyroelectric and electrocaloric properties of ferroelectric nanoparticles. Physical Review Materials, 2019, 3(10): 104414
https://doi.org/10.1103/PhysRevMaterials.3.104414
159 S Patel, M Kumar. Influence of grain size on the electrocaloric and pyroelectric properties in non-reducible BaTiO3 ceramics. AIP Advances, 2020, 10(8): 085302
https://doi.org/10.1063/5.0017348
160 S Das, Y L Tang, Z Hong. et al.. Observation of room-temperature polar skyrmions. Nature, 2019, 568(7752): 368–372
https://doi.org/10.1038/s41586-019-1092-8
161 Q Li, V A Stoica, M Paściak. et al.. Subterahertz collective dynamics of polar vortices. Nature, 2021, 592(7854): 376–380
https://doi.org/10.1038/s41586-021-03342-4
162 Y J Wang, Y P Feng, Y L Zhu. et al.. Polar meron lattice in strained oxide ferroelectrics. Nature Materials, 2020, 19(8): 881–886
https://doi.org/10.1038/s41563-020-0694-8
163 A Y Abid, Y Sun, X Hou. et al.. Creating polar antivortex in PbTiO3/SrTiO3 superlattice. Nature Communications, 2021, 12(1): 2054
https://doi.org/10.1038/s41467-021-22356-0
164 H Huang, G Zhang, X Ma. et al.. Size effects of electrocaloric cooling in ferroelectric nanowires. Journal of the American Ceramic Society, 2018, 101(4): 1566–1575
https://doi.org/10.1111/jace.15304
165 T Ishidate, S Abe, H Takahashi. et al.. Phase diagram of BaTiO3. Physical Review Letters, 1997, 78(12): 2397–2400
https://doi.org/10.1103/PhysRevLett.78.2397
166 J J Wang, P P Wu, X Q Ma. et al.. Temperature-pressure phase diagram and ferroelectric properties of BaTiO3 single crystal based on a modified Landau potential. Journal of Applied Physics, 2010, 108(11): 114105
https://doi.org/10.1063/1.3504194
167 H Yu, J Wang, S Kozinov. et al.. Phase field analysis of crack tip parameters in ferroelectric polycrystals under large-scale switching. Acta Materialia, 2018, 154: 334–342
https://doi.org/10.1016/j.actamat.2018.05.042
168 Y H Huang, J J Wang, T N Yang. et al.. A thermodynamic potential, energy storage performances, and electrocaloric effects of Ba1–xSrxTiO3 single crystals. Applied Physics Letters, 2018, 112(10): 102901
https://doi.org/10.1063/1.5020515
169 G P Cao, H B Huang, D S Liang. et al.. A phenomenological potential and ferroelectric properties of BaTiO3-CaTiO3 solid solution. Ceramics International, 2017, 43(9): 6671–6676
https://doi.org/10.1016/j.ceramint.2017.02.058
170 G Z Zhang, X S Zhang, T N Yang. et al.. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano, 2015, 9(7): 7164–7174
https://doi.org/10.1021/acsnano.5b03371
171 J F Qian, R C Peng, Z H Shen. et al.. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: In situ characterization and phase-field simulation. Advanced Materials, 2019, 31(5): 1801949
172 X M Shi, J Wang, J W Xu. et al.. Quantitative investigation of polar nanoregion size effects in relaxor ferroelectrics. Acta Materialia, 2022, 237: 118147
https://doi.org/10.1016/j.actamat.2022.118147
173 S Q Xu, X M Shi, H Pan. et al.. Strain engineering of energy storage performance in relaxor ferroelectric thin film capacitors. Advanced Theory and Simulations, 2022, 5(6): 2100324
https://doi.org/10.1002/adts.202100324
174 Y Liu, T Yang, B Zhang. et al.. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites. Advanced Materials, 2020, 32(49): 2005431
https://doi.org/10.1002/adma.202005431
175 R Z Gao, J Wang, J S Wang. et al.. Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory. Acta Physica Sinica, 2020, 69(21): 217801
https://doi.org/10.7498/aps.69.20201195
176 J Wang, R X Zhu, J Ma. et al.. Photoenhanced electroresistance at dislocation-mediated phase boundary. ACS Applied Materials & Interfaces, 2022, 14(16): 18662–18670
https://doi.org/10.1021/acsami.1c25259
177 J Wang, Y Y Fan, Y Song. et al.. Microscopic physical origin of polarization induced large tunneling electroresis-tance in tetragonal-phase BiFeO3. Acta Materialia, 2022, 225: 117564
https://doi.org/10.1016/j.actamat.2021.117564
178 H Gu, X Qian, X Li. et al.. A chip scale electrocaloric effect based cooling device. Applied Physics Letters, 2013, 102(12): 122904
https://doi.org/10.1063/1.4799283
179 U Plaznik, M Vrabelj, Z Kutnjak. et al.. Electrocaloric cooling: The importance of electric-energy recovery and heat regeneration. Europhysics Letters, 2015, 111(5): 57009
https://doi.org/10.1209/0295-5075/111/57009
180 X S Qian, T N Yang, T Zhang. et al.. Anomalous negative electrocaloric effect in a relaxor/normal ferroelectric polymer blend with controlled nano- and meso-dipolar couplings. Applied Physics Letters, 2016, 108(14): 142902
https://doi.org/10.1063/1.4944776
181 H Akamatsu, Y Yuan, V A Stoica. et al.. Light-activated gigahertz ferroelectric domain dynamics. Physical Review Letters, 2018, 120(9): 096101
https://doi.org/10.1103/PhysRevLett.120.096101
182 T Yang, B Wang, J M Hu. et al.. Domain dynamics under ultrafast electric-field pulses. Physical Review Letters, 2020, 124(10): 107601
https://doi.org/10.1103/PhysRevLett.124.107601
183 C C Shao, X M Shi, J Wang. et al.. Designing ultrafast cooling rate for room temperature electrocaloric effects by phase-field simulations. Advanced Theory and Simulations, 2022, 5(10): 2200406
https://doi.org/10.1002/adts.202200406
184 Q Li, J Shi, D Han. et al.. Concept design and numerical evaluation of a highly efficient rotary electrocaloric refrigeration device. Applied Thermal Engineering, 2021, 190: 116806
https://doi.org/10.1016/j.applthermaleng.2021.116806
185 C Aprea, A Greco, A Maiorino. et al.. A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model. International Journal of Refrigeration, 2016, 69: 369–382
https://doi.org/10.1016/j.ijrefrig.2016.06.016
186 C Aprea, A Greco, A Maiorino. et al.. A two-dimensional model of a solid-state regenerator based on combined electrocaloric-elastocaloric effect. Energy Procedia, 2017, 126: 337–344
https://doi.org/10.1016/j.egypro.2017.08.225
187 C ApreaA GrecoA Maiorino, et al.. Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy, 2018, 165(Part A): 439–455
188 C Aprea, A Greco, A Maiorino. et al.. The employment of caloric-effect materials for solid-state heat pumping. International Journal of Refrigeration, 2019, 109: 1–11
189 C Aprea, A Greco, A Maiorino. et al.. A numerical investigation on a caloric heat pump employing nanofluids. International Journal of Heat and Technology, 2019, 37(3): 675–681
https://doi.org/10.18280/ijht.370302
190 H Gu, X S Qian, H J Ye. et al.. An electrocaloric refrigerator without external regenerator. Applied Physics Letters, 2014, 105(16): 162905
https://doi.org/10.1063/1.4898812
191 T Zhang, X S Qian, H M Gu. et al.. An electrocaloric refrigerator with direct solid to solid regeneration. Applied Physics Letters, 2017, 110(24): 243503
https://doi.org/10.1063/1.4986508
192 S J Smullin, Y Wang, D E Schwartz. System optimization of a heat-switch-based electrocaloric heat pump. Applied Physics Letters, 2015, 107(9): 093903
https://doi.org/10.1063/1.4928716
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed