Please wait a minute...
Frontiers in Energy

ISSN 2095-1701

ISSN 2095-1698(Online)

CN 11-6017/TK

邮发代号 80-972

2019 Impact Factor: 2.657

Frontiers in Energy  2024, Vol. 18 Issue (3): 291-307   https://doi.org/10.1007/s11708-024-0917-9
  本期目录
From seawater to hydrogen via direct photocatalytic vapor splitting: A review on device design and system integration
Hongxia LI1, Khaja WAHAB AHMED2, Mohamed A. ABDELSALAM3, Michael FOWLER2, Xiao-Yu WU4()
1. Technology Innovation Institute, Masdar City, Abu Dhabi 9639, United Arab Emirates
2. Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
3. Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
4. Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
 全文: PDF(7701 KB)   HTML
Abstract

Solar-driven hydrogen production from seawater attracts great interest for its emerging role in decarbonizing global energy consumption. Given the complexity of natural seawater content, photocatalytic vapor splitting offers a low-cost and safe solution, but with a very low solar-to-hydrogen conversion efficiency. With a focus on cutting-edge photothermal–photocatalytic device design and system integration, the recent research advances on vapor splitting from seawater, as well as industrial implementations in the past decades were reviewed. In addition, the design strategies of the key processes were reviewed, including vapor temperature and pressure control during solar thermal vapor generation from seawater, capillary-fed vaporization with salt repellent, and direct photocatalytic vapor splitting for hydrogen production. Moreover, the existing laboratory-scale and industrial-scale systems, and the integration principles and remaining challenges in the future seawater-to-hydrogen technology were discussed.

Key wordsseawater    hydrogen    photocatalytic    vapor splitting    solar-driven
收稿日期: 2023-09-30      出版日期: 2024-06-12
Corresponding Author(s): Xiao-Yu WU   
 引用本文:   
. [J]. Frontiers in Energy, 2024, 18(3): 291-307.
Hongxia LI, Khaja WAHAB AHMED, Mohamed A. ABDELSALAM, Michael FOWLER, Xiao-Yu WU. From seawater to hydrogen via direct photocatalytic vapor splitting: A review on device design and system integration. Front. Energy, 2024, 18(3): 291-307.
 链接本文:  
https://academic.hep.com.cn/fie/CN/10.1007/s11708-024-0917-9
https://academic.hep.com.cn/fie/CN/Y2024/V18/I3/291
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
1 Energy Agency International. Global hydrogen review 2021. 2023–10–6, available at website of IEA
2 J N Hausmann, R Schlögl, P W Menezes, et al. Is direct seawater splitting economically meaningful? Energy & Environmental Science, 2021, 14(7): 3679–3685 10.1039/D0EE03659E
3 J Guo, Y Zheng, Z Hu. et al.. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst. Nature Energy, 2023, 8: 264–272
https://doi.org/10.1038/s41560-023-01195-x
4 M A Khan, T Al-Attas, S Roy, et al. Seawater electrolysis for hydrogen production: a solution looking for a problem? Energy & Environmental Science, 2021, 14(9): 4831–4839 10.1039/D1EE00870F
5 C X Kronawitter, L Vayssieres, S Shen. et al.. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energy & Environmental Science, 2011, 4(10): 3889–3899
https://doi.org/10.1039/c1ee02186a
6 S XuB Yu. Current development and prospect of hydrogen energy technology in China. Journal of Beijing Institute of Technology (Social Sciences Edition), 2021, 23(6): 1-12 (in Chinese)
7 D M Davenport, A Deshmukh, J R Werber. et al.. High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: Current status, design considerations, and research needs. Environmental Science & Technology Letters, 2018, 5(8): 467–475
https://doi.org/10.1021/acs.estlett.8b00274
8 M Fujiwara, M Kikuchi. Solar desalination of seawater using double-dye-modified PTFE membrane. Water Research, 2017, 127: 96–103
https://doi.org/10.1016/j.watres.2017.10.015
9 A Shaheen, S AlBadi, B Zhuman. et al.. Photothermal air gap membrane distillation for the removal of heavy metal ions from wastewater. Chemical Engineering Journal, 2022, 431(1): 133909
https://doi.org/10.1016/j.cej.2021.133909
10 A Lee, J W Elam, S B Darling. Membrane materials for water purification: Design, development, and application. Environmental Science: Water Research & Technology, 2016, 2(1): 17–42
https://doi.org/10.1039/C5EW00159E
11 T Stoll, G Zafeiropoulos, M N Tsampas. Solar fuel production in a novel polymeric electrolyte membrane photoelectrochemical (PEM-PEC) cell with a web of titania nanotube arrays as photoanode and gaseous reactants. International Journal of Hydrogen Energy, 2016, 41(40): 17807–17817
https://doi.org/10.1016/j.ijhydene.2016.07.230
12 H Döscher, J F Geisz, T G Deutsch. et al.. Sunlight absorption in water-efficiency and design implications for photoelectrochemical devices. Energy & Environmental Science, 2014, 7(9): 2951–2956
https://doi.org/10.1039/C4EE01753F
13 C S Gopinath, N Nalajala. A scalable and thin film approach for solar hydrogen generation: A review on enhanced photocatalytic water splitting. Journal of Materials Chemistry, A.Materials for Energy and Sustainability, 2021, 9(3): 1353–1371
https://doi.org/10.1039/D0TA09619A
14 L Guo, Y Chen, J Su. et al.. Obstacles of solar-powered photocatalytic water splitting for hydrogen production: A perspective from energy flow and mass flow. Energy, 2019, 172: 1079–1086
https://doi.org/10.1016/j.energy.2019.02.050
15 J Zhang, W Hu, S Cao. et al.. Recent progress for hydrogen production by photocatalytic natural or simulated seawater splitting. Nano Research, 2020, 13(9): 2313–2322
https://doi.org/10.1007/s12274-020-2880-z
16 X Pang, S Das, J T Davis. et al.. Membraneless electrolyzers for low-cost hydrogen production. ECS Meeting Abstracts, 2020, MA2020(1): 1587
https://doi.org/10.1149/MA2020-01371587mtgabs
17 Y Yao, X Gao, X Meng. Recent advances on electrocatalytic and photocatalytic seawater splitting for hydrogen evolution. International Journal of Hydrogen Energy, 2021, 46(13): 9087–9100
https://doi.org/10.1016/j.ijhydene.2020.12.212
18 A S Alketbi, A Raza, M Sajjad. et al.. Direct solar vapor generation with micro-3D printed hydrogel device. EcoMat, 2022, 4(1): 12157
https://doi.org/10.1002/eom2.12157
19 F Tao, M Green, A V Garcia. et al.. Recent progress of nanostructured interfacial solar vapor generators. Applied Materials Today, 2019, 17: 45–84
https://doi.org/10.1016/j.apmt.2019.07.011
20 L Zhou, X Li, G W Ni. et al.. The revival of thermal utilization from the Sun: Interfacial solar vapor generation. National Science Review, 2019, 6(3): 562–578
https://doi.org/10.1093/nsr/nwz030
21 L Zhu, M Gao, C K N Peh. et al.. Recent progress in solar-driven interfacial water evaporation: Advanced designs and applications. Nano Energy, 2019, 57: 507–518
https://doi.org/10.1016/j.nanoen.2018.12.046
22 H He, Z Song, Y Lan. et al.. Photocorrosion-based BiOCl photothermal materials for synergistic solar-driven desalination and photoelectrochemistry energy storage and release. ACS Applied Materials & Interfaces, 2023, 15(14): 17947–17956
https://doi.org/10.1021/acsami.3c01277
23 Y Goto, T Hisatomi, Q Wang. et al.. A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule, 2018, 2(3): 509–520
https://doi.org/10.1016/j.joule.2017.12.009
24 T Hisatomi, K Maeda, K Takanabe. et al.. Aspects of the water splitting mechanism on (Ga1–xZnx)(N1–xOx) photocatalyst modified with Rh2–yCryO3 cocatalyst. Journal of Physical Chemistry C, 2009, 113(51): 21458–21466
https://doi.org/10.1021/jp9079662
25 S Nishioka, F E Osterloh, X Wang. et al.. Photocatalytic water splitting. Nature Reviews Methods Primers, 2023, 31(3): 1–15
26 J M Herrmann. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115–129
https://doi.org/10.1016/S0920-5861(99)00107-8
27 M Gao, C K Peh, L Zhu. et al.. Photothermal catalytic gel featuring spectral and thermal management for parallel freshwater and hydrogen production. Advanced Energy Materials, 2020, 10(23): 2000925
https://doi.org/10.1002/aenm.202000925
28 C J Shearer, T Hisatomi, K Domen. et al.. Gas phase photocatalytic water splitting of moisture in ambient air: Toward reagent-free hydrogen production. Journal of Photochemistry and Photobiology A Chemistry, 2020, 401(1): 112757
https://doi.org/10.1016/j.jphotochem.2020.112757
29 T Suguro, F Kishimoto, N Kariya. et al.. A hygroscopic nano-membrane coating achieves efficient vapor-fed photocatalytic water splitting. Nature Communications, 2022, 13(1): 5698
https://doi.org/10.1038/s41467-022-33439-x
30 J M Spurgeon, N S Lewis. Proton exchange membrane electrolysis sustained by water vapor. Energy & Environmental Science, 2011, 4(8): 2993
https://doi.org/10.1039/c1ee01203g
31 Z Li, B Tian, W Zhen. et al.. Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2017, 203: 408–415
https://doi.org/10.1016/j.apcatb.2016.10.049
32 F Dionigi, P C K Vesborg, T Pedersen. et al.. Gas phase photocatalytic water splitting with Rh2–yCryO3/GaN:ZnO in μ-reactors. Energy & Environmental Science, 2011, 4(8): 2937–2942
https://doi.org/10.1039/c1ee01242h
33 S Guo, X Li, J Li. et al.. Boosting photocatalytic hydrogen production from water by photothermally induced biphase systems. Nature Communications, 2021, 12(1): 1343
https://doi.org/10.1038/s41467-021-21526-4
34 P Cheng, X Quan, S Gong. et al.. Recent analytical and numerical studies on phase-change heat transfer. Advances in Heat Transfer, 2014, 46: 187–248
https://doi.org/10.1016/bs.aiht.2014.08.004
35 H L Zhang, J Baeyens, J Degrève. et al.. Concentrated solar power plants: Review and design methodology. Renewable & Sustainable Energy Reviews, 2013, 22: 466–481
https://doi.org/10.1016/j.rser.2013.01.032
36 L Zhao, B Bhatia, L Zhang. et al.. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule, 2020, 4(12): 2733–2745
https://doi.org/10.1016/j.joule.2020.10.007
37 O Neumann, A Urban, J Day. et al.. Solar vapor generation enabled by nanoparticles. ACS Nano, 2013, 7, (1): 42–49
https://doi.org/10.1021/nn304948h
38 Zavoico A B. Solar Power Tower Design Basis Document, Revision 0. Sandia National Laboratory Technical Report SAND2001-2100. 2001
39 R Abbas, M J Montes, M Piera. et al.. Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Conversion and Management, 2012, 54(1): 133–144
https://doi.org/10.1016/j.enconman.2011.10.010
40 G Ni, G Li, S V Boriskina. et al.. Steam generation under one sun enabled by a floating structure with thermal concentration. Nature Energy, 2016, 1(9): 16126
https://doi.org/10.1038/nenergy.2016.126
41 Y Ito, Y Tanabe, J Han. et al.. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Advanced Materials, 2015, 27(29): 4302–4307
https://doi.org/10.1002/adma.201501832
42 H. Ghasemi H, Ni G, Marconnet A M, et al. Solar steam generation by heat localization. Nature Communications, 2014, 5: 449
43 J Fang, J Liu, J Gu. et al.. Hierarchical porous carbonized lotus seedpods for highly efficient solar steam generation. Chemistry of Materials, 2018, 30(18): 6217–6221
https://doi.org/10.1021/acs.chemmater.8b01702
44 A Raza, J Lu, S Alzaim. et al.. Novel receiver-enhanced solar vapor generation: Review and perspectives. Energies, 2018, 11(1): 253
https://doi.org/10.3390/en11010253
45 X Li, J Li, J Lu. et al.. Enhancement of interfacial solar vapor generation by environmental energy. Joule, 2018, 2(7): 1331–1338
https://doi.org/10.1016/j.joule.2018.04.004
46 C Jia, Y Li, Z Yang. et al.. Rich mesostructures derived from natural woods for solar steam generation. Joule, 2017, 1(3): 588–599
https://doi.org/10.1016/j.joule.2017.09.011
47 S He, C Chen, Y Kuang. et al.. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy & Environmental Science, 2019, 12(5): 1558–1567
https://doi.org/10.1039/C9EE00945K
48 W Li, F Li, D Zhang. et al.. Porous wood-carbonized solar steam evaporator. Wood Science and Technology, 2021, 55(3): 625–637
https://doi.org/10.1007/s00226-021-01270-0
49 J Liang, X Ji, J Han. et al.. Modeling and experimental investigation on a direct steam generation solar collector with flat plate thermal concentration. Energy Exploration & Exploitation, 2020, 38(5): 1879–1892
https://doi.org/10.1177/0144598720922681
50 O Neumann, C Feronti, A D Neumann. et al.. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(29): 11677–11681
https://doi.org/10.1073/pnas.1310131110
51 J Li, M Du, G Lv. et al.. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Advanced Materials, 2018, 30(49): 1805159
https://doi.org/10.1002/adma.201805159
52 M H Alhosani, H Li, A S Alketbi. et al.. Enhanced liquid propagation and wicking along nanostructured porous surfaces. Advanced Engineering Materials, 2021, 23(7): 2100118
https://doi.org/10.1002/adem.202100118
53 G Vaartstra, L Zhang, Z Lu. et al.. Capillary-fed, thin film evaporation devices. Journal of Applied Physics, 2020, 128(13): 130901
https://doi.org/10.1063/5.0021674
54 Abdelsalam M A. Bio-inspired solar thermal brine treatment with direct vapor generation. Thesis for the Master’s Degree. Abu Dhabi: Khalifa University, 2023
55 K Xu, C Wang, Z Li. et al.. Salt mitigation strategies of solar-driven interfacial desalination. Advanced Functional Materials, 2020, 31(8): 2007855
https://doi.org/10.1002/adfm.202007855
56 Y Xia, Y Kang, Z Wang. et al.. Rational designs of interfacial-heating solar-thermal desalination devices: Recent progress and remaining challenges. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2021, 9(11): 6612–6633
https://doi.org/10.1039/D0TA11911C
57 L Zhang, X Li, Y Zhong. et al.. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nature Communications, 2022, 13(1): 849
https://doi.org/10.1038/s41467-022-28457-8
58 G Ni, S H Zandavi, S M Javid. et al.. A salt-rejecting floating solar still for low-cost desalination. Energy & Environmental Science, 2018, 11(6): 1510–1519
https://doi.org/10.1039/C8EE00220G
59 S M Shalaby, S W Sharshir, A E Kabeel. et al.. Reverse osmosis desalination systems powered by solar energy: Preheating techniques and brine disposal challenges—A detailed review. Energy Conversion and Management, 2022, 251: 114971
https://doi.org/10.1016/j.enconman.2021.114971
60 G A Gebreslase. Review on membranes for the filtration of aqueous based solution: Oil in water emulsion. Journal of Membrane Science & Technology, 2018, 8(2): 1000188
https://doi.org/10.4172/2155-9589.1000188
61 A Deshmukh, C Boo, V Karanikola. et al.. Membrane distillation at the water-energy nexus: Limits, opportunities, and challenges. Energy & Environmental Science, 2018, 11(5): 1177–1196
https://doi.org/10.1039/C8EE00291F
62 Y Wang, J Lee, J R Werber. et al.. Capillary-driven desalination in a synthetic mangrove. Science Advances, 2020, 6(8): eaax5253
https://doi.org/10.1126/sciadv.aax5253
63 Y Yang, H Zhao, Z Yin. et al.. A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. Materials Horizons, 2018, 5(6): 1143–1150
https://doi.org/10.1039/C8MH00386F
64 W Xu, X Hu, S Zhuang. et al.. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Advanced Energy Materials, 2018, 8(14): 1702884
https://doi.org/10.1002/aenm.201702884
65 R Hu, J Zhang, Y Kuang. et al.. A Janus evaporator with low tortuosity for long-term solar desalination. Journal of Materials Chemistry, A. Materials for Energy and Sustainability, 2019, 7(25): 15333–15340
https://doi.org/10.1039/C9TA01576K
66 S Gao, X Dong, J Huang. et al.. Bioinspired soot-deposited Janus fabrics for sustainable solar steam generation with salt-rejection. Global Challenges, 2019, 3(8): 1800117
https://doi.org/10.1002/gch2.201800117
67 G Liu, T Chen, J Xu. et al.. Salt-rejecting solar interfacial evaporation. Cell Reports. Physical Science, 2021, 2(1): 100310
https://doi.org/10.1016/j.xcrp.2020.100310
68 T A Cooper, S H Zandavi, G W Ni. et al.. Contactless steam generation and superheating under one sun illumination. Nature Communications, 2018, 9(1): 5086
https://doi.org/10.1038/s41467-018-07494-2
69 A K Menon, I Haechler, S Kaur. et al.. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nature Sustainability, 2020, 3(2): 144–151
https://doi.org/10.1038/s41893-019-0445-5
70 K Domen, S Naito, M Soma. et al.. Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst. Journal of the Chemical Society. Chemical Communications, 1980, (12): 543–544
https://doi.org/10.1039/C39800000543
71 A Fujishima, K Honda. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0
72 X Chen, S Shen, L Guo. et al.. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
https://doi.org/10.1021/cr1001645
73 A K Wahab, H Idriss. Study of the photocatalytic reforming and oxidation of Glycerol over Ag–Pd/TiO2. International Journal of Hydrogen Energy, 2024, 52(Part B), 159−171.DOI: 10.1016/j.ijhydene.2023.05.344
74 A K Wahab, M A Nadeem, H Idriss. Hydrogen production during ethylene glycol photoreactions over Ag-Pd/TiO2 at different partial pressures of oxygen. Frontiers in Chemistry, 2019, 7: 476835
https://doi.org/10.3389/fchem.2019.00780
75 W Zhang, K Banerjee-Ghosh, F Tassinari. et al.. Enhanced electrochemical water splitting with chiral molecule-coated Fe3O4 nanoparticles. ACS Energy Letters, 2018, 3(10): 2308–2313
https://doi.org/10.1021/acsenergylett.8b01454
76 J Leduc, Y Goenuellue, P Ghamgosar. et al.. Electronically-coupled phase boundaries in α-Fe2O3/Fe3O4 nanocomposite photoanodes for enhanced water oxidation. ACS Applied Nano Materials, 2019, 2(1): 334–342
https://doi.org/10.1021/acsanm.8b01936
77 F Amano, E Ishinaga, A Yamakata. Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. Journal of Physical Chemistry C, 2013, 117(44): 22584–22590
https://doi.org/10.1021/jp408446u
78 F Wang, C DiValentin, G Pacchioni. Rational band gap engineering of WO3 photocatalyst for visible light water splitting. ChemCatChem, 2012, 4(4): 476–478
https://doi.org/10.1002/cctc.201100446
79 S B A Hamid, S J Teh, C W Lai. Photocatalytic water oxidation on ZnO: A review. Catalysts, 2017, 7(3): 93
https://doi.org/10.3390/catal7030093
80 M Ni, M K H Leung, D Y C Leung. et al.. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable & Sustainable Energy Reviews, 2007, 11(3): 401–425
https://doi.org/10.1016/j.rser.2005.01.009
81 Y Hong, Z Fang, B Yin. et al.. A visible-light-driven heterojunction for enhanced photocatalytic water splitting over Ta2O5 modified g-C3N4 photocatalyst. International Journal of Hydrogen Energy, 2017, 42(10): 6738–6745
https://doi.org/10.1016/j.ijhydene.2016.12.055
82 R Marschall. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials, 2014, 24(17): 2421–2440
https://doi.org/10.1002/adfm.201303214
83 R Qian, H Zong, J Schneider. et al.. Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: An overview. Catalysis Today, 2019, 335: 78–90
https://doi.org/10.1016/j.cattod.2018.10.053
84 C F Fu, X Wu, J Yang. Material design for photocatalytic water splitting from a theoretical perspective. Advanced Materials, 2018, 30(48): 1802106
https://doi.org/10.1002/adma.201802106
85 F Dingenen, S W Verbruggen. Tapping hydrogen fuel from the ocean: A review on photocatalytic, photoelectrochemical and electrolytic splitting of seawater. Renewable and Sustainable Energy Reviews, 2021, 142: 110866
https://doi.org/10.1016/j.rser.2021.110866
86 C C Zhu, T Jiang, H C Yang. et al.. ZnFe2O4 nanoparticles with iron-rich surfaces for enhanced photocatalytic water vapor splitting. Applied Surface Science, 2023, 636: 157842
https://doi.org/10.1016/j.apsusc.2023.157842
87 T Daeneke, N Dahr, P Atkin. et al.. Surface water dependent properties of sulfur-rich molybdenum sulfides: Electrolyteless gas phase water splitting. ACS Nano, 2017, 11(7): 6782–6794
https://doi.org/10.1021/acsnano.7b01632
88 F A Chowdhury, M L Trudeau, H Guo. et al.. A photochemical diode artificial photosynthesis system for unassisted high efficiency overall pure water splitting. Nature Communication, 2018, 9: 1707
https://doi.org/10.1038/s41467-018-04067-1
89 Q Wang, T Hisatomi, Q Jia. et al.. Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Materials, 2016, 15: 611–615
https://doi.org/10.1038/nmat4589
90 K Maeda, K Teramura, D Lu. et al.. Noble-metal/Cr2O3 core/shell nanoparticles as a cocatalyst for photocatalytic overall water splitting. Angewandte Chemie International Edition, 2006, 45(46): 7806–7809
https://doi.org/10.1002/anie.200602473
91 K H Ng, S Y Lai, C K Cheng. et al.. Photocatalytic water splitting for solving energy crisis: Myth, fact or busted?. Chemical Engineering Journal, 2021, 417: 128847
https://doi.org/10.1016/j.cej.2021.128847
92 H Nishiyama, T Yamada, M Nakabayashi. et al.. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature, 2021, 598(7880): 304–307
https://doi.org/10.1038/s41586-021-03907-3
93 Z Jin, X Yan, X Hao. Rational design of a novel p-n heterojunction based on 3D layered nanoflower MoSx supported CoWO4 nanoparticles for superior photocatalytic hydrogen generation. Journal of Colloid and Interface Science, 2020, 569: 34–49
https://doi.org/10.1016/j.jcis.2020.02.052
94 R N Bhattacharya, C Y Lee, F H Pollak. et al.. Optical study of amorphous MoS3: Determination of the fundamental energy gap. Journal of Non-Crystalline Solids, 1987, 91(2): 235–242
https://doi.org/10.1016/S0022-3093(87)80306-X
95 M L Tang, D C Grauer, B Lassalle-Kaiser. et al.. Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photosensitizer. Angewandte Chemie International Edition, 2011, 50(43): 10203–10207
https://doi.org/10.1002/anie.201104412
96 S Zhang, H Zhao, X Li. et al.. A hierarchical SiPN/CN/MoSx photocathode with low internal resistance and strong light-absorption for solar hydrogen production. Applied Catalysis B: Environmental, 2022, 300: 120758
https://doi.org/10.10:16/j.apcatb.2021.120758
97 S Shin, Z Jin, D H Kwon. et al.. High turnover frequency of hydrogen evolution reaction on amorphous MoS2 thin film directly grown by atomic layer deposition. Langmuir, 2015, 31(3): 1196–1202
https://doi.org/10.1021/la504162u
98 J D Benck, Z Chen, L Y Kuritzky. et al.. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catalysis, 2012, 2(9): 1916–1923
https://doi.org/10.1021/cs300451q
99 T Bourgeteau, D Tondelier, B Geffroy. et al.. A H2-evolving photocathode based on direct sensitization of MoS3 with an organic photovoltaic cell. Energy & Environmental Science, 2013, 6(9): 2706
https://doi.org/10.1039/c3ee41321g
100 P Zhou, I A Navid, Y Ma. et al.. Solar-to-hydrogen efficiency of more than 9% in photocatalytic water splitting. Nature, 2023, 613(7942): 66–70
https://doi.org/10.1038/s41586-022-05399-1
101 G N Schrauzer, T D Guth. Photolysis of water and photoreduction of nitrogen on titanium dioxide. Journal of the American Chemical Society, 1977, 99(22): 7189–7193
https://doi.org/10.1021/ja00464a015
102 K Domen, S Naito, T Onishi. et al.. Study of the photocatalytic decomposition of water vapor over a nickel(II) oxide-strontium titanate (SrTiO3) catalyst. ChemInform, 1982, 86(18): 3657–3661
103 W H Lee, C W Lee, G D Cha. et al.. Floatable photocatalytic hydrogel nanocomposites for large-scale solar hydrogen production. Nature Nanotechnology, 2023, 18(7): 754–762
https://doi.org/10.1038/s41565-023-01385-4
104 H Han, K Huang, Y Yao. et al.. Enhanced photocatalytic splitting of photothermally induced water vapor to evolve hydrogen. Chemical Engineering Journal, 2022, 450: 138419
https://doi.org/10.1016/j.cej.2022.138419
105 M Gao, P K N Connor, G W Ho. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science, 2016, 9(10): 3151–3160
https://doi.org/10.1039/C6EE00971A
106 C Sansom, K Patchigolla, K Jonnalagadda. et al.. Design of a novel CSP/MED desalination system. In: Proceedings of the 26th International Conference on Concentrating Solar Power and Chemical Energy Systems, Freiburg. New York: AIP Publishing, 2022, 2445(1): 140012
https://doi.org/10.1063/5.0085769
107 S Chen, P Zhao, G Xie. et al.. A floating solar still inspired by continuous root water intake. Desalination, 2021, 512: 115133
https://doi.org/10.1016/j.desal.2021.115133
108 NEOM. NEOM adopts pioneering solar dome technology for sustainable desalination project 2020. 2023-10-6, available at website of NEOM
109 Y Zheng, M Ma, H Shao. Recent advances in efficient and scalable solar hydrogen production through water splitting. Carbon Neutrality, 2023, 2(1): 23
https://doi.org/10.1007/s43979-023-00064-6
110 M Schreck, M Niederberger. Photocatalytic gas phase reactions. Chemistry of Materials, 2019, 31(3): 597–618
https://doi.org/10.1021/acs.chemmater.8b04444
111 S Jenny, M Matsuoka, M Takeuchi. et al.. Understanding TiO2 photocatalysis: Mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986
https://doi.org/10.1021/cr5001892
112 S Patial, V Hasija, P Raizada. et al.. Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario. Journal of Environmental Chemical Engineering, 2020, 8(3): 103791
https://doi.org/10.1016/j.jece.2020.103791
113 C Acar, I Dincer, G F Naterer. Review of photocatalytic water-splitting methods for sustainable hydrogen production. International Journal of Energy Research, 2016, 40(11): 1449–1473
https://doi.org/10.1002/er.3549
114 F Mikaeili, T Gilmore, P I Gouma. Photochemical water splitting via transition metal oxides. Catalysts, 2022, 12(11): 1303
https://doi.org/10.3390/catal12111303
115 M Q Yang, M Gao, M Hong. et al.. Visible-to-NIR photon harvesting: Progressive engineering of catalysts for solar-powered environmental purification and fuel production. Advanced Materials, 2018, 30(47): 1802894
https://doi.org/10.1002/adma.201802894
116 L Zhu, M Gao, C K N Peh. et al.. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons, 2018, 5(3): 323–343
https://doi.org/10.1039/C7MH01064H
117 Tu Y, Zhou J, Lin S, et al. Photomolecular effect leading to water evaporation exceeding thermal limit. 2022, arXiv: 2201. 10385 2022
118 Tu Y, Chen G. Photomolecular effect: Visible light absorption at water-vapor interface. 2022, arXiv:2202.10646 10.48550/arXiv.2202.10646
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed