This paper presents a multiple target implementation technique for a doubly fed induction generator (DFIG) under unbalanced and distorted grid voltage based on direct power control (DPC). Based on the mathematical model of DFIG under unbalanced and distorted voltage, the proportional and integral (PI) regulator is adopted to regulate the DFIG average active and reactive powers, while the vector PI (VPI) resonant regulator is used to achieve three alternative control targets: (1) balanced and sinusoidal stator current; (2) smooth instantaneous stator active and reactive powers; (3) smooth electromagnetic torque and instantaneous stator reactive power. The major advantage of the proposed control strategy over the conventional method is that neither negative and harmonic sequence decomposition of grid voltage nor complicated control reference calculation is required. The insensitivity of the proposed control strategy to DFIG parameter deviation is analyzed. Finally, the DFIG experimental system is developed to validate the availability of the proposed DPC strategy under unbalanced and distorted grid voltage.
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(4): 321-334.
Heng NIAN,Yi-peng SONG. Multiple target implementation for a doubly fed induction generator based on direct power control under unbalanced and distorted grid voltage. Front. Inform. Technol. Electron. Eng, 2015, 16(4): 321-334.
Cardenas, R., Pena, R., Alepuz, S., , 2013. Overview of control systems for the operation of DFIGs in wind energy applications. IEEE Trans. Ind. Electron., 60(7): 2776-2798. []
https://doi.org/10.1109/TIE.2013.2243372
2
Hu, J., He, Y., 2009. Reinforced control and operation of DFIG-based wind-power-generation system under unbalanced grid voltage conditions. IEEE Trans. Energy Conv., 24(4): 905-915. []
https://doi.org/10.1109/TEC.2008.2001434
3
Hu, J., He, Y., Xu, L., , 2009. Improved control of DFIG systems during network unbalance using PI–R current regulators. IEEE Trans. Ind. Electron., 56(2): 439-451. []
https://doi.org/10.1109/TIE.2008.2006952
4
Hu, J., Xu, H., He, Y., 2013. Coordinated control of DFIG’s RSC and GSC under generalized unbalanced and distorted grid voltage conditions. IEEE Trans. Ind. Electron., 60(7): 2808-2819. []
https://doi.org/10.1109/TIE.2012.2217718
5
Iwanski, G., Koczara, W., 2008. DFIG-based power generation system with UPS function for variable-speed applications. IEEE Trans. Ind. Electron., 55(8): 3047-3054. []
https://doi.org/10.1109/TIE.2008.918473
6
Jabr, H.M., Kar, N.C., 2007. Effects of main and leakage flux saturation on the transient performances of doubly-fed wind driven induction generator. Electr. Power Syst. Res., 77(8): 1019-1027. []
https://doi.org/10.1016/j.epsr.2006.08.034
7
Lascu, C., Asiminoaei, L., Boldea, I., , 2007. High performance current controller for selective harmonic compensation in active power filters. IEEE Trans. Power Electron., 22(5): 1826-1835. []
https://doi.org/10.1109/TPEL.2007.904060
8
Lascu, C., Asiminoaei, L., Boldea, I., , 2009. Frequency response analysis of current controllers for selective harmonic compensation in active power filters. IEEE Trans. Ind. Electron., 56(2): 337-347. []
https://doi.org/10.1109/TIE.2008.2006953
9
Liu, C., Blaabjerg, F., Chen, W., , 2012. Stator current harmonic control with resonant controller for doubly fed induction generator. IEEE Trans. Power Electron., 27(7): 3207-3220. []
https://doi.org/10.1109/TPEL.2011.2179561
10
Luna, A., Lima, F.K.A., Santos, D., , 2011. Simplified modeling of a DFIG for transient studies in wind power applications. IEEE Trans. Ind. Electron., 58(1): 9-20. []
https://doi.org/10.1109/TIE.2010.2044131
11
Martinez, M.I., Susperregui, A., Tapia, G., , 2013. Sliding-mode control of a wind turbine-driven double-fed induction generator under non-ideal grid voltages. IET Renew. Power Gener., 7(4): 370-379. []
https://doi.org/10.1049/iet-rpg.2012.0172
12
Nian, H., Song, Y., 2014. Direct power control of doubly fed induction generator under distorted grid voltage. IEEE Trans. Power Electron., 29(2): 894-905. []
https://doi.org/10.1109/TPEL.2013.2258943
13
Nian, H., Song, Y., Zhou, P., , 2011. Improved direct power control of a wind turbine driven doubly fed induction generator during transient grid voltage unbalance. IEEE Trans. Energy Conv., 26(3): 976-986. []
https://doi.org/10.1109/TEC.2011.2158436
14
Pena, R., Cardenas, R., Reyes, E., , 2011. Control of doubly fed induction generator via an indirect matrix converter with changing DC voltage. IEEE Trans. Ind. Electron., 58(10): 4664-4674. []
https://doi.org/10.1109/TIE.2011.2109334
15
Xu, H., Hu, J., He, Y., 2012a. Operation of wind-turbinedriven DFIG systems under distorted grid voltage conditions: analysis and experimental validations. IEEE Trans. Power Electron., 27(5): 2354-2366. []
https://doi.org/10.1109/TPEL.2011.2174255
16
Xu, H., Hu, J., He, Y., 2012b. Integrated modeling and enhanced control of DFIG under unbalanced and distorted grid voltage conditions. IEEE Trans. Energy Conv., 27(3): 725-736. []
https://doi.org/10.1109/TEC.2012.2199495
17
Xu, L., Wang, Y., 2007. Dynamic modeling and control of DFIG-based wind turbines under unbalanced network conditions. IEEE Trans. Power Syst., 22(1): 314-323. []
https://doi.org/10.1109/TPWRS.2006.889113
18
Xu, L., Zhi, D., Williams, B.W., 2009. Predictive current control of doubly fed induction generators. IEEE Trans. Ind. Electron., 56(10): 4143-4153. []
https://doi.org/10.1109/TIE.2009.2017552
19
Zhou, P., He, Y., Sun, D., 2009. Improved direct power control of a DFIG-based wind turbine during network unbalance. IEEE Trans. Power Electron., 24(11): 2465-2474. []
https://doi.org/10.1109/TPEL.2009.2032188