Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2015, Vol. 16 Issue (5): 391-403   https://doi.org/10.1631/FITEE.1400267
  本期目录
Fine-grained P2P traffic classification by simply counting flows
Jie HE1,*(),Yue-xiang YANG1(),Yong QIAO2(),Wen-ping DENG1()
1. College of Computer, National University of Defense Technology, Changsha 410073, China
2. The Research Institution, China Electronic Equipment & System Engineering Company, Beijing 100141, China
 全文: PDF(1088 KB)  
Abstract

The continuous emerging of peer-to-peer (P2P) applications enriches resource sharing by networks, but it also brings about many challenges to network management. Therefore, P2P applications monitoring, in particular, P2P traffic classification, is becoming increasingly important. In this paper, we propose a novel approach for accurate P2P traffic classification at a fine-grained level. Our approach relies only on counting some special flows that are appearing frequently and steadily in the traffic generated by specific P2P applications. In contrast to existing methods, the main contribution of our approach can be summarized as the following two aspects. Firstly, it can achieve a high classification accuracy by exploiting only several generic properties of flows rather than complicated features and sophisticated techniques. Secondly, it can work well even if the classification target is running with other high bandwidth-consuming applications, outperforming most existing host-based approaches, which are incapable of dealing with this situation. We evaluated the performance of our approach on a real-world trace. Experimental results show that P2P applications can be classified with a true positive rate higher than 97.22% and a false positive rate lower than 2.78%.

Key wordsTraffic classification    Peer-to-peer (P2P)    Fine-grained    Host-based
收稿日期: 2014-07-22      出版日期: 2016-01-05
Corresponding Author(s): Jie HE   
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(5): 391-403.
Jie HE,Yue-xiang YANG,Yong QIAO,Wen-ping DENG. Fine-grained P2P traffic classification by simply counting flows. Front. Inform. Technol. Electron. Eng, 2015, 16(5): 391-403.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1400267
https://academic.hep.com.cn/fitee/CN/Y2015/V16/I5/391
1 Auld, T., Moore, A.W., Gull, S.F., 2007. Bayesian neural networks for Internet traffic classification. IEEE Trans. Neur. Netw., 18(1): 223-239. []
https://doi.org/10.1109/TNN.2006.883010
2 Ban, T., Guo, S., Eto, M., , 2012. A study on cost-effective P2P traffic classification. Proc. Int. Joint Conf. on Neural Networks, p.1-7. []
https://doi.org/10.1109/IJCNN.2012.6252672
3 Basher, N., Mahanti, A., Mahanti, A., , 2008. A comparative analysis of web and peer-to-peer traffic. Proc. 17th Int. Conf. on World Wide Web, p.287-296. []
https://doi.org/10.1145/1367497.1367537
4 Bermolen, P., Mellia, M., Meo, M., , 2011. Abacus: accurate behavioral classification of P2P-TV traffic. Comput. Netw., 55(6): 1394-1411. []
https://doi.org/10.1016/j.comnet.2010.12.004
5 Chen, J.B., 2011. Fuzzy based approach for P2P file sharing detection. J. Internet Technol., 12(6): 921-930.
6 Dainotti, A., Pescapè, A., Claffy, K.C., 2012. Issues and future directions in traffic classification. IEEE Network, 26(1): 35-40. []
https://doi.org/10.1109/MNET.2012.6135854
7 Dhamankar, R., King, R., 2007. Protocol Identification via Statistical Analysis (PISA). White Paper, Tipping Point.
8 Este, A., Gringoli, F., Salgarelli, L., 2009. On the stability of the information carried by traffic flow features at the packet level. ACM SIGCOMM Comput. Commun. Rev., 39(3): 13-18. []
https://doi.org/10.1145/1568613.1568616
9 Finamore, A., Mellia, M., Meo, M., , 2010. KISS: stochastic packet inspection classifier for UDP traffic. IEEE/ACM Trans. Netw., 18(5): 1505-1515. []
https://doi.org/10.1109/TNET.2010.2044046
10 Gallagher, B., Iliofotou, M., Eliassi-Rad, T., , 2010. Link homophily in the application layer and its usage in traffic classification. Proc. IEEE INFOCOM, p.1-5. []
https://doi.org/10.1109/INFCOM.2010.5462239
11 Gomes, J.V., Inácio, P.R.M., Pereira, M., , 2013. Detection and classification of peer-to-peer traffic: a survey. ACM Comput. Surv., 45(3), Article 30. []
https://doi.org/10.1145/2480741.2480747
12 He, J., Yang, Y., Qiao, Y., , 2013. Accurate classification of P2P traffic by clustering flows. China Commun., 10(11): 42-51. []
https://doi.org/10.1109/CC.2013.6674209
13 Huang, N.F., Jai, G.Y., Chao, H.C., 2008. Early identifying application traffic with application characteristics. Proc. IEEE Int. Conf. on Communications, p.5788-5792. []
https://doi.org/10.1109/ICC.2008.1083
14 Hullár, B., Laki, S., Gyorgy, A., 2011. Early identification of peer-to-peer traffic. Proc. IEEE Int. Conf. on Communications, p.1-6. []
https://doi.org/10.1109/icc.2011.5963023
15 Hurley, J., Garcia-Palacios, E., Sezer, S., 2011. Host-based P2P flow identification and use in real-time. ACM Trans. Web, 5(2), Article 7. []
https://doi.org/10.1145/1961659.1961661
16 Iliofotou, M., Kim, H., Faloutsos, M., , 2011. Graption: a graph-based P2P traffic classification framework for the Internet backbone. Comput. Netw., 55(8): 1909-1920. []
https://doi.org/10.1016/j.comnet.2011.01.020
17 Karagiannis, T., Papagiannaki, K., Faloutsos, M., 2005. BLINC: multilevel traffic classification in the dark. ACM SIGCOMM Comput. Commun. Rev., 35(4): 229-240. []
https://doi.org/10.1145/1090191.1080119
18 Moore, A., Zuev, D., Crogan, M., 2005. Discriminators for Use in Flow-Based Classification. Technical Report, University of London, UK.
19 Nguyen, T.T.T., Armitage, G., 2008. Clustering to assist supervised machine learning for real-time IP traffic classification. Proc. IEEE Int. Conf. on Communications, p.5857-5862. []
https://doi.org/10.1109/ICC.2008.1095
20 Ohzahata, S., Hagiwara, Y., Terada, M., , 2005. A traffic identification method and evaluations for a pure P2P application. Proc. 6th Int. Workshop on Passive and Active Network Measurement, p.55-68. []
https://doi.org/10.1007/978-3-540-31966-5_5
21 Sandvine, 2014. Global Internet Phenomena Report 1H 2014. Technical Report. Sandvine Incorporated ULC, Waterloo, Ontario, Canada.
22 Tabatabaei, T.S., Adel, M., Karray, F., , 2012. Machine learning-based classification of encrypted Internet traffic. Proc. 8th Int. Conf. on Machine Learning and Data Mining in Pattern Recognition, p.578-592. []
https://doi.org/10.1007/978-3-642-31537-4_45
23 Valenti, S., Rossi, D., 2011. Identifying key features for P2P traffic classification. Proc. IEEE Int. Conf. on Communications, p.1-6. []
https://doi.org/10.1109/icc.2011.5963018
24 Yang, D., Zhang, Y., Zhang, H., , 2009. Multi-factors oriented study of P2P Churn. Int. J. Commun. Syst., 22(9): 1089-1103. []
https://doi.org/10.1002/dac.1001
25 Zhang, T., Ramakrishnan, R., Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. ACM SIGMOD Rec., 25(2): 103-114. []
https://doi.org/10.1145/235968.233324
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed