Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2015, Vol. 16 Issue (12): 1046-1058   https://doi.org/10.1631/FITEE.1500085
  本期目录
Face recognition based on subset selection via metric learning on manifold
Hong SHAO1,Shuang CHEN1,*(),Jie-yi ZHAO2,Wen-cheng CUI1,Tian-shu YU3
1. 1School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2. 2The University of Texas Health Science Center at Houston, Houston 77030, USA
3. 3Schulich School of Engineering, University of Calgary, Calgary T2N 1N4, Canada
 全文: PDF(956 KB)  
Abstract

With the development of face recognition using sparse representation based classification (SRC), many relevant methods have been proposed and investigated. However, when the dictionary is large and the representation is sparse, only a small proportion of the elements contributes to the l1-minimization. Under this observation, several approaches have been developed to carry out an efficient element selection procedure before SRC. In this paper, we employ a metric learning approach which helps find the active elements correctly by taking into account the interclass/intraclass relationship and manifold structure of face images. After the metric has been learned, a neighborhood graph is constructed in the projected space. A fast marching algorithm is used to rapidly select the subset from the graph, and SRC is implemented for classification. Experimental results show that our method achieves promising performance and significant efficiency enhancement.

Key wordsFace recognition    Sparse representation    Manifold structure    Metric learning    Subset selection
收稿日期: 2015-03-19      出版日期: 2015-12-21
Corresponding Author(s): Shuang CHEN   
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(12): 1046-1058.
Hong SHAO,Shuang CHEN,Jie-yi ZHAO,Wen-cheng CUI,Tian-shu YU. Face recognition based on subset selection via metric learning on manifold. Front. Inform. Technol. Electron. Eng, 2015, 16(12): 1046-1058.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1500085
https://academic.hep.com.cn/fitee/CN/Y2015/V16/I12/1046
1 Arandjelović, O., Shakhnarovich, G., Fisher, J., et al., 2005. Face recognition with image sets using manifold density divergence. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.581–588
https://doi.org/10.1109/CVPR.2005.151
2 Belkin, M., Niyogi, P., 2001. Laplacian eigenmaps and spectral techniques for embedding and clustering. NIPS,14:585 591.
3 Candes, E.J., 2008. The restricted isometry property and its implications for compressed sensing. Compt. Rend. Math., 346(9-10):589–592
https://doi.org/10.1016/j.crma.2008.03.014
4 Candes, E.J., Tao, T., 2007. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Stat.,35(6):2313-2351
https://doi.org/10.1214/009053606000001523
5 Deng, W.H., Hu, J.N., Guo, J., 2012. Extended SRC: undersampled face recognition via intraclass variant dictionary. IEEE Trans. Patt. Anal. Mach. Intell., 34(9):1864–1870
https://doi.org/10.1109/TPAMI.2012.30
6 Efron, B., Hastie, T., Johnstone, I., et al., 2004. Least angle regression. Ann. Stat., 32(2):407–499
https://doi.org/10.1214/009053604000000067
7 Georghiades, A.S., Belhumeur, P.N., Kriegman, D., 2001. From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Patt. Anal. Mach. Intell., 23(6):643–660
https://doi.org/10.1109/34.927464
8 He, R., Zheng, W.S., Hu, B.G., 2011. Maximum correntropy criterion for robust face recognition. IEEE Trans. Patt. Anal. Mach. Intell., 33(8):1561-1576
https://doi.org/10.1109/TPAMI.2010.220
9 He, R., Zheng, W.S., Hu, B.G., et al., 2013. Two-stage nonnegative sparse representation for large-scale face recognition. IEEE Trans. Neur. Netw. Learn. Syst., 24(1):35–46
https://doi.org/10.1109/TNNLS.2012.2226471
10 He, R., Zheng, W.S., Tan, T.N., et al., 2014. Half-quadraticbased iterative minimization for robust sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 36(2):261–275
https://doi.org/10.1109/TPAMI.2013.102
11 Jiang, Z.L., Lin, Z., Davis, L.S., 2011. Learning a discriminative dictionary for sparse coding via label consistent K-SVD. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1697–1704
https://doi.org/10.1109/CVPR.2011.5995354
12 Lai, Z.H., Li, Y.J., Wan, M.H., et al., 2013. Local sparse representation projections for face recognition. Neur. Comput. Appl., 23(7):2231–2239
https://doi.org/10.1007/s00521-012-1174-0
13 Liao, S.C., Jain, A.K., Li, S.Z., 2013. Partial face recognition: alignment-free approach. IEEE Trans. Patt. Anal. Mach. Intell., 35(5):1193–1205
https://doi.org/10.1109/TPAMI.2012.191
14 Lu, J.W., Tan, Y.P., Wang, G., 2013. Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Patt. Anal. Mach. Intell., 35(1):39–51
https://doi.org/10.1109/TPAMI.2012.70
15 Martinez, A., Benavente, B., 1998. The AR Face Database. CVC Technical Report 24.
16 Ortiz, E.G., Becker, B.C., 2014. Face recognition for webscale datasets. Comput. Vis. Image Understand., 118:153–170
https://doi.org/10.1016/j.cviu.2013.09.004
17 Patel, V.M., Wu, T., Biswas, S., et al., 2012. Dictionarybased face recognition under variable lighting and pose. IEEE Trans. Inform. Forens. Secur., 7(3):954–965
https://doi.org/10.1109/TIFS.2012.2189205
18 Phillips, P.J., Wechsler, H., Huang, J., et al., 1998. The FERET database and evaluation procedure for facerecognition algorithms. Image Vis. Comput., 16(5):295–306
https://doi.org/10.1016/S0262-8856(97)00070-X
19 Roweis, S.T., Saul, L.K., 2000. Nonlinear dimensionality reduction by locally linear embedding. Science,290(5500):2323–2326
https://doi.org/10.1126/science.290.5500.2323
20 Sethian, J.A., 1999. Fast marching methods. SIAM Rev., 41(2):199–235
https://doi.org/10.1137/S0036144598347059
21 Seung, H.S., Lee, D.D., 2000. The manifold ways of perception. Science, 290(5500):2268–2269
https://doi.org/10.1126/science.290.5500.2268
22 Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323
https://doi.org/10.1126/science.290.5500.2319
23 Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B, 58(1):267–288.
24 Vandenberghe, L., Boyd, S., 1996. Semidefinite programming. SIAM Rev., 38(1):49–95
https://doi.org/10.1137/1038003
25 Wagner, A., Wright, J., Ganesh, A., et al., 2012. Toward a practical face recognition system: robust alignment and illumination by sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 34(2):372–386
https://doi.org/10.1109/TPAMI.2011.112
26 Wang, L.F., Wu, H.Y., Pan, C.H., 2015. Manifold regularized local sparse representation for face recognition. IEEE Trans. Circ. Syst. Video Technol., 25(4): 651–659
https://doi.org/10.1109/TCSVT.2014.2335851
27 Wang, R.P., Shan, S.G., Chen, X.L., et al., 2008. Manifoldmanifold distance with application to face recognition based on image set. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–8
https://doi.org/10.1109/CVPR.2008.4587719
28 Weinberger, K.Q., Saul, L.K., 2009. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res., 10:207–244
https://doi.org/10.1145/1577069.1577078
29 Wright, J., Yang, A.Y., Ganesh, A., et al., 2009. Robust face recognition via sparse representation. IEEE Trans. Patt. Anal. Mach. Intell., 31(2):210–227
https://doi.org/10.1109/TPAMI.2008.79
30 Xu, Y., Zuo, W.M., Fan, Z.Z., 2012. Supervised sparse representation method with a heuristic strategy and face recognition experiments. Neurocomputing, 79:125–131
https://doi.org/10.1016/j.neucom.2011.10.013
31 Xu, Y., Zhu, Q., Fan, Z.Z., et al., 2013. Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inform. Sci., 238:138–148
https://doi.org/10.1016/j.ins.2013.02.051
32 Yang, M., Zhang, L., 2010. Gabor feature based sparse representation for face recognition with gabor occlusion dictionary. Proc. 11th European Conf. on Computer Vision, p.448–461
https://doi.org/10.1007/978-3-642-15567-3_33
33 Yang, M., Zhang, D., Yang, J., 2011. Robust sparse coding for face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.625–632
https://doi.org/10.1109/CVPR.2011.5995393
34 Yu, Z.P., Wu, Z.D., Zhang, J.W., 2013. An illumination robust algorithm for face recognition via SRC and Gradientfaces. Proc. 2nd Int. Conf. on Innovative Computing and Cloud Computing, p.36–40
https://doi.org/10.1145/2556871.2556880
35 Zhang, D., Yang, M., Feng, X.C., 2011. Sparse representation or collaborative representation: which helps face recognition? Proc. IEEE Int. Conf. on Computer Vision, p.471–478
https://doi.org/10.1109/ICCV.2011.6126277
36 Zhang, Q., Li, B.X., 2010. Discriminative K-SVD for dictionary learning in face recognition. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.2691–2698
https://doi.org/10.1109/CVPR.2010.5539989
37 Zhou, T.Y., Tao, D.C., Wu, X.D., 2011. Manifold elastic net: a unified framework for sparse dimension reduction. Data Min. Knowl. Discov., 22(3):340–371
https://doi.org/10.1007/s10618-010-0182-x
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed