Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2015, Vol. 16 Issue (9): 707-719   https://doi.org/10.1631/FITEE.1500148
  本期目录
E-commerce businessmodel mining and prediction
Zhou-zhou HE1(),Zhong-fei ZHANG1(),Chun-ming CHEN2(),Zheng-gang WANG2()
1. Department of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
2. Alibaba Group, Hangzhou 310027, China
 全文: PDF(676 KB)  
Abstract

We study the problem of business model mining and prediction in the e-commerce context. Unlike most existing approaches where this is typically formulated as a regression problem or a time-series prediction problem, we take a different formulation to this problem by noting that these existing approaches fail to consider the potential relationships both among the consumers (consumer influence) and among the shops (competitions or collaborations). Taking this observation into consideration, we propose a new method for e-commerce business model mining and prediction, called EBMM, which combines regression with community analysis. The challenge is that the links in the network are typically not directly observed, which is addressed by applying information diffusion theory through the consumer-shop network. Extensive evaluations using Alibaba Group e-commerce data demonstrate the promise and superiority of EBMM to the state-of-the-art methods in terms of business model mining and prediction.

Key wordsE-commerce    Business model prediction    Consumer influence    Social network    Sales prediction
收稿日期: 2015-05-05      出版日期: 2015-09-11
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2015, 16(9): 707-719.
Zhou-zhou HE,Zhong-fei ZHANG,Chun-ming CHEN,Zheng-gang WANG. E-commerce businessmodel mining and prediction. Front. Inform. Technol. Electron. Eng, 2015, 16(9): 707-719.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1500148
https://academic.hep.com.cn/fitee/CN/Y2015/V16/I9/707
1 Anagnostopoulos, A., Kumar, R., Mahdian, M., 2008. Influence and correlation in social networks. Proc. 14th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.7―15. []
https://doi.org/10.1145/1401890.1401897
2 Anagnostopoulos, A., Brova, G., Terzi, E., 2011. Peer and authority pressure in information-propagation models. LNCS, 6911: 76―91. []
https://doi.org/10.1007/978-3-642-23780-5_15
3 Bakshy, E., Hofman, J.M., Mason, W.A., , 2011. Everyone’s an influencer: quantifying influence on Twitter. Proc. 4th ACM Int. Conf. on Web Search and Data Mining, p.65―74. []
https://doi.org/10.1145/1935826.1935845
4 Bakshy, E., Rosenn, I., Marlow, C., , 2012. The role of social networks in information diffusion. Proc. 21st Int. Conf. on World Wide Web, p.519―528. []
https://doi.org/10.1145/2187836.2187907
5 Bernstein, M.S., Bakshy, E., Burke, M., , 2013. Quantifying the invisible audience in social networks. Proc. SIGCHI Conf. on Human Factors in Computing Systems, p.21―30. []
https://doi.org/10.1145/2470654.2470658
6 Bhagat, S., Goyal, A., Lakshmanan, L.V.S., 2012. Maximizing product adoption in social networks. Proc. 5th ACM Int. Conf. on Web Search and Data Mining, p.603―612. []
https://doi.org/10.1145/2124295.2124368
7 Bonchi, F., Castillo, C., Gionis, A., , 2011. Social network analysis and mining for business applications. ACM Trans. Intell. Syst. Technol., 2(3), Article 22. []
https://doi.org/10.1145/1961189.1961194
8 Box, G.E.P., 2008. Time Series Analysis: Forecasting and Control. Wiley. []
https://doi.org/10.1002/9781118619193
9 Boyd, S., Parikh, N., Chu, E., , 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1): 1―122. []
https://doi.org/10.1561/2200000016
10 Cha, M., Haddadi, H., Benevenuto, F., , 2010. Measuring user influence in Twitter: the million follower fallacy. Proc. 4th Int. AAAI Conf. on Weblogs and Social Media, p.10―17.
11 Cui, P., Jin, S.F., Yu, L.Y., , 2013. Cascading outbreak prediction in networks: a data-driven approach. Proc. 19th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.901―909. []
https://doi.org/10.1145/2487575.2487639
12 Dholakia, U.M., Bagozzi, R.P., Pearo, L.K., 2004. A social influence model of consumer participation in networkand small-group-based virtual communities. Int. J. Res. Market., 21(3): 241―263. []
https://doi.org/10.1016/j.ijresmar.2003.12.004
13 Donoho, D.L., Johnstone, I.M., 1995. Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Assoc., 90(432): 1200―1224. []
https://doi.org/10.1080/01621459.1995.10476626
14 Duong, Q., Wellman, M.P., Singh, S.P., 2011. Modeling information diffusion in networks with unobserved links. SocialCom/PASSAT, p.362―369.
15 Eagle, N., Pentland, A., Lazer, D., 2009. Inferring friendship network structure by using mobile phone data. PNAS, 106(36): 15274―15278. []
https://doi.org/10.1073/pnas.0900282106
16 Friedman, J., Hastie, T., H?fling, H., , 2007. Pathwise coordinate optimization. Ann. Appl. Statist., 1(2): 302―332. []
https://doi.org/10.1214/07-AOAS131
17 Gomez-Rodriguez, M., Sch?lkopf, B., 2012. Influence maximization in continuous time diffusion networks. Int. Conf. on Machine Learning.
18 Gomez-Rodriguez, M., Leskovec, J., Krause, A., 2010. Inferring networks of diffusion and influence. Proc. 16th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.1019―1028. []
https://doi.org/10.1145/1835804.1835933
19 Guille, A., Hacid, H., Favre, C., , 2013. Information diffusion in online social networks: a survey. ACM SIGMOD Rec., 42(1): 17―28. []
https://doi.org/10.1145/2503792.2503797
20 Hoefling, H., 2010. A path algorithm for the fused lasso signal approximator. J. Comput. Graph. Statist., 19(4): 984―1006. []
https://doi.org/10.1198/jcgs.2010.09208
21 Long, B., Zhang, Z.F., Yu, P.S., 2007. A probabilistic framework for relational clustering. Proc. 13th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.470―479. []
https://doi.org/10.1145/1281192.1281244
22 Myers, S.A., Leskovec, J., 2012. Clash of the contagions: cooperation and competition in information diffusion. IEEE 12th Int. Conf. on Data Mining, p.539―548. []
https://doi.org/10.1109/ICDM.2012.159
23 Myers, S.A., Zhu, C.G., Leskovec, J., 2012. Information diffusion and external influence in networks. Proc. 18th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.33―41. []
https://doi.org/10.1145/2339530.2339540
24 Onnela, J.P., Reed-Tsochas, F., 2010. Spontaneous emergence of social influence in online systems. PNAS, 107(43): 18375―18380. []
https://doi.org/10.1073/pnas.0914572107
25 Romero, D.M., Galuba, W., Asur, S., , 2011. Influence and passivity in social media. European Conf. on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, p.18―33. []
https://doi.org/10.1007/978-3-642-23808-6_2
26 Saito, K., Ohara, K., Yamagishi, Y., , 2011. Learning diffusion probability based on node attributes in social networks. 19th Int. Symp. on Foundations of Intelligent Systems, p.153―162. []
https://doi.org/10.1007/978-3-642-21916-0_18
27 Tang, J., Sun, J.M., Wang, C., , 2009. Social influence analysis in large-scale networks. Proc. 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.807―816. []
https://doi.org/10.1145/1557019.1557108
28 Tibshirani, R., Saunders, M., Rosset, S., , 2005. Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B, 67(1): 91―108. []
https://doi.org/10.1111/j.1467-9868.2005.00490.x
29 Tsur, O., Rappoport, A., 2012. What’s in a hashtag?: content based prediction of the spread of ideas in microblogging communities. Proc. 5th ACM Int. Conf. on Web Search and Data Mining, p.643―652. []
https://doi.org/10.1145/2124295.2124320
30 Wu, S.M., Hofman, J.M., Mason, W.A., , 2011. Who says what to whom on Twitter. Proc. 20th Int. Conf. on World Wide Web, p.705―714. []
https://doi.org/10.1145/1963405.1963504
31 Yang, J., Leskovec, J., 2010. Modeling information diffusion in implicit networks. IEEE 10th Int. Conf. on Data Mining, p.599―608.
32 Zhang, Z.F., Salerno, J.J., Yu, P.S., 2003. Applying data mining in investigating money laundering crimes. Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, p.747―752. []
https://doi.org/10.1145/956750.956851
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed