Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2016, Vol. 17 Issue (3): 185-199   https://doi.org/10.1631/FITEE.1500251
  本期目录
A survey of photon mapping state-of-the-art research and future challenges
Chun-meng KANG1,2,*(),Lu WAN1,2,*(),Yan-ning XU1,2,*(),Xiang-xu MENG1,2,*()
1. Department of Computer Science and Technology, Shandong University, Jinan 250101, China
2. Engineering Research Center of Digital Media Technology, Ministry of Education, Jinan 250101, China
 全文: PDF(1869 KB)  
Abstract

Global illumination is the core part of photo-realistic rendering. The photon mapping algorithm is an effective method for computing global illumination with its obvious advantage of caustic and color bleeding rendering. It is an active research field that has been developed over the past two decades. The deficiency of precise details and efficient rendering are still the main challenges of photon mapping. This report reviews recent work and classifies it into a set of categories including radiance estimation, photon relaxation, photon tracing, progressive photon mapping, and parallel methods. The goals of our report are giving readers an overall introduction to photon mapping and motivating further research to address the limitations of existing methods.

Key wordsGlobal illumination    Photon mapping    Radiance estimation    Photon relaxation    Progressive photon mapping
收稿日期: 2015-08-06      出版日期: 2016-03-17
Corresponding Author(s): Chun-meng KANG,Lu WAN,Yan-ning XU,Xiang-xu MENG   
 引用本文:   
. [J]. Frontiers of Information Technology & Electronic Engineering, 2016, 17(3): 185-199.
Chun-meng KANG,Lu WAN,Yan-ning XU,Xiang-xu MENG. A survey of photon mapping state-of-the-art research and future challenges. Front. Inform. Technol. Electron. Eng, 2016, 17(3): 185-199.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1500251
https://academic.hep.com.cn/fitee/CN/Y2016/V17/I3/185
1 Belcour, L., Soler, C., 2011. Frequency based kernel estimation for progressive photon mapping. Proc. SIGGRAPH Asia, p.47:1.
2 Benthin, C., Wald, I., Woop, S., , 2012. Combining single and packet-ray tracing for arbitrary ray distributions on the Intel MIC architecture. IEEE Trans. Visual. Comput. Graph., 18(9):1438–1448.
3 Chen, J.T., Ge, X.Y., Wei, L.Y., , 2013. Bilateral blue noise sampling. ACM Trans. Graph., 32(6):216.1–216.11.
4 Davidovič, T., Křivanek, J., Hašan, M., , 2014. Progressive light transport simulation on the GPU: survey and improvements. ACM Trans. Graph., 33(3):29.1–29.19.
5 Dmitriev, K., Brabec, S., Myszkowski, K., , 2002. Interactive global illumination using selective photon tracing. Proc. 13th Eurographics Workshop on Rendering, 2002:100–113.
6 Fabianowski, B., Dingliana, J., 2009. Interactive global photon mapping. Comput. Graph. Forum, 28(4):1151–1159.
7 Fallahpour, M., Lin, M.B., Lin, C.H., 2014. Parallel photonmapping rendering on a mesh-noc-based mpsoc platform. J. Parall. Distrib. Comput., 74(7):2626–2638.
8 Fan, S., Chenney, S., Lai, Y., 2005. Metropolis photon sampling with optional user guidance. Proc. Eurographics Symp. on Rendering, p.127–138.
9 Fradin, D., Meneveaux, D., Horna, S., 2005. Out-of-core photon-mapping for large buildings. Proc. Eurographics Symp. on Rendering, p.65–72.
10 Frisvad, J.R., Schjoth, L., Erleben, K., , 2014. Photon differential splatting for rendering caustics. Comput. Graph. Forum, 33(6):252–263.
11 Frolov, A.A., Kharlamov, V.A., Galaktionov, K.A., , 2014. Multiple reference octrees for a GPU photon mapping and irradiance caching. Program. Comput. Softw., 40(4):208–214.
12 Garcia, R., Urena, C., Sbert, M., 2012. Description and solution of an unreported intrinsic bias in photon mapping density estimation with constant kernel. Comput. Graph. Forum, 31(1):33–41.
13 Garcia, R., Urena, C., Poch, J., , 2014. Overestimation and underestimation biases in photon mapping with non-constant kernels. IEEE Trans. Visual. Comput. Graph., 20(10):1441–1450.
14 Georgiev, I., Křivanek, J., Davidovič, T., , 2013. Light transport simulation with vertex connection and merging. Proc. 23rd Int. Conf. on Transport Theory, p.1–2.
15 Gunther, J., Grosch, T., 2014. Distributed out-of-core stochastic progressive photon mapping. Comput. Graph. Forum, 33(6):154–166.
16 Gunther, J., Wald, I., Slusallek, P., 2004. Realtime caustics using distributed photon mapping. Proc. Eurographics Symp. on Rendering Techniques, p.111–121.
17 Hachisuka, T., Jensen, H.W., 2009. Stochastic progressive photon mapping. ACM Trans. Graph., 28(5):141.1–141.8.
18 Hachisuka, T., Jensen, H.W., 2010. Parallel progressive photon mapping on GPUs. Proc. ACM SIGGRAPH Asia, p.54.1.
19 Hachisuka, T., Jensen, H.W., 2011. Robust adaptive photon tracing using photon path visibility. ACM Trans. Graph., 30(5):114.1–114.11.
20 Hachisuka, T., Ogaki, S., Jensen, H.W., 2008. Progressive photon mapping. ACM Trans. Graph., 27(5):130.1–130.8.
21 Hachisuka, T., Jarosz, W., Jensen, H.W., 2010. A progressive error estimation framework for photon density estimation. ACM Trans. Graph., 29(6):144.1–144.12.
22 Hachisuka, T., Pantaleoni, J., Jensen, W.R., 2012. A path space extension for robust light transport simulation. ACM Trans. Graph., 31(6):191.1–191.10.
23 Havran, V., Bittner, J., Herzog, R., , 2005. Ray maps for global illumination. Proc. 16th Eurographics Conf. on Rendering Techniques, p.43–54.
24 Herzog, R., Havran, V., Kinuwaki, S., , 2007. Global illumination using photon ray splatting. Comput. Graph. Forum, 26(3):503–513.
25 Igehy, H., 1999. Tracing ray differentials. Proc. 26th Annual Conf. on Computer Graphics and Interactive Techniques, p.179–186.
26 Jensen, H.W., 1995. Importance driven path tracing using the photon map. Proc. Eurographics Workshop on Rendering Techniques, p.326–335.
27 Jensen, H.W., 1996. Global illumination using photon maps. Proc. Eurographics Workshop on Rendering Techniques, p.21–30.
28 Jensen, H.W., 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters, USA.
29 Jensen, H.W., Christensen, N.J., 1995. Photon maps in bidirectional Monte Carlo ray tracing of complex objects. Comput. Graph., 19(2):215–224.
30 Kajiya, J.T., 1986. The rendering equation. Comput. Graph., 20(4):143–150.
31 Kang, C.M., Wang, L., Wang, P., , 2015. Coherent photon mapping on the Intel MIC architecture. J. Comput. Sci. Technol., 30(3):519–527.
32 Kaplanyan, A.S., Dachsbacher, C., 2013. Adaptive progressive photon mapping. ACM Trans. Graph., 32(2):16.1–16.13.
33 Keller, A., Wald, I., 2000. Efficient importance sampling techniques for the photon map. Proc. Conf. on Vision, Modeling, and Visualization, p.271–278.
34 Keller, A., Fascione, L., Fajardo, M., , 2015. The path tracing revolution in the movie industry. Proc. ACM SIGGRAPH Courses, p.24.1–24.7.
35 Knaus, C., Zwicker, M., 2011. Progressive photon mapping: a probabilistic approach. ACM Trans. Graph., 30(3):25.1–25.13.
36 Křivanek, J., Georgiev, I., Hachisuka, T., , 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Trans. Graph., 33(4):70–79.
37 Lafortune, E.P., Willems, Y.D., 1993. Bi-directional path tracing. Proc. Computer Graphics, p.145–153.
38 Larsen, B.D., Christensen, N.J., 2004. Simulating photon mapping for real-time applications. Proc. 15th Eurographics Conf. on Rendering Techniques, p.123–131.
39 Lavignotte, F., Paulin, M., 2003. Scalable photon splatting for global illumination. Proc. 1st Int. Conf. on Computer Graphics and Interactive Techniques, p.203–210.
40 Liu, X.D., Zheng, C.W., 2014a. Adaptive importance photon shooting technique. Comput. Graph., 38:158–166.
41 Liu, X.D., Zheng, C.W., 2014b. Anisotropic progressive photon mapping. Proc. 5th Int. Conf. on Graphic and Image Processing, Article No. 90690C.
42 Ma, V.C.H., McCool, M.D., 2002. Low latency photon mapping using block hashing. Proc. ACM SIGGRAPH/ EUROGRAPHICS Conf. on Graphics Hardware, p.89–99.
43 Mara, M., Luebke, D., McGuire, M., 2013. Toward practical real-time photon mapping: efficient GPU density estimation. Proc. ACM SIGGRAPH Symp. on Interactive 3D Graphics and Games, p.71–78.
44 McGuire, M., Luebke, D., 2009. Hardware-accelerated global illumination by image space photon mapping. Proc. Conf. on High Performance Graphics, p.77–89.
45 Myszkowski, K., 1997. Lighting reconstruction using fast and adaptive density estimation techniques. Proc. Eurographics Workshop on Rendering Techniques, p.251–262.
46 Parker, S.G., Bigler, J., Dietrich, A., , 2010. OptiX: a general purpose ray tracing engine. ACM Trans. Graph., 29(4):66.1–66.13.
47 Purcell, T.J., Donner, C., Cammarano, M., , 2003. Photon mapping on programmable graphics hardware. Proc. ACM SIGGRAPH/EUROGRAPHICS Conf. on Graphics Hardware, p.41–50.
48 Roland, S., 2003. Bias compensation for photon maps. Comput. Graph. Forum, 22(4):729–742.
49 Schjoth, L., 2009. Anisotropic Density Estimation in Global Illumination. PhD Thesis, University of Copenhagen, Denmark.
50 Schjoth, L., Frisvad, J.R., Erleben, K., 2007. Photon differentials. Proc. 5th Int. Conf. on Computer Graphics and Interactive Techniques, p.179–186.
51 Schjoth, L., Sporring, J., Olsen, O.F., 2008. Diffusion based photon mapping. Comput. Graph. Forum, 27(8):2114–2127.
52 Singh, S., Faloutsos, P., 2007. SIMD packet techniques for photon mapping. Proc. IEEE Symp. on Interactive Ray Tracing, p.87–94.
53 Spencer, B., Jones, M.W., 2009. Into the blue: better caustics through photon relaxation. Comput. Graph. Forum, 28(2):319–328.
54 Spencer, B., Jones, M.W., 2013a. Photon parameterisation for robust relaxation constraints. Comput. Graph. Forum, 32(2pt1):83–92.
55 Spencer, B., Jones, M.W., 2013b. Progressive photon relaxation. ACM Trans. Graph., 32(1):7.1–7.11.
56 Spencer, B., Jones, M.W., Lim, I.S., 2015. A visualization tool used to develop new photon mapping techniques. Comput. Graph. Forum, 34(1):127-140.
57 Sturzlinger, W., Bastos, R., 1997. Interactive rendering of globally illuminated glossy scenes. Proc. Eurographics Workshop on Rendering Techniques, p.93–102.
58 Suykens, F., Willems, Y.D., 2000. Density control for photon maps. Proc. 11th Eurographics Workshop on Rendering Techniques, p.23–34.
59 Tamura, M., Takizawa, H., Kobayashi, H., 2008. A parallel image generation algorithm based on photon map partitioning. Proc. Conf. on Computer Graphics and Imaging, p.145–151.
60 Ulichney, R.A., 1988. Dithering with blue noise. Proc. IEEE, 76(1):56–79.
61 Wang, R., Zhou, K., Pan, M., , 2009. An efficient GPU-based approach for interactive global illumination. ACM Trans. Graph., 28(3):91.1–91.8.
62 Yao, C.H., Wang, B., Chan, B., , 2010. Multi-image based photon tracing for interactive global illumination of dynamic scenes. Comput. Graph. Forum, 29(4):1315–1324.
63 Zhou, K., Hou, Q., Wang, R., ., 2008. Real-time KDtree construction on graphics hardware. ACM Trans. Graph., 27(5):126.1–126.12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed