Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (3): 410-422   https://doi.org/10.1631/FITEE.1600029
  本期目录
一种新颖的用于宽输入电压范围的LLC谐振变换器的变模态控制策略
林辉品(),靳晓光,解良,胡进,吕征宇()
浙江大学电气工程学院
A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range
Hui-pin LIN(),Xiao-guang JIN,Liang XIE,Jin HU,Zheng-yu LU()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1046 KB)  
摘要:

本文提出了一种新颖的适用于LLC谐振变换器的混合模态控制策略,可以使得LLC谐振变换器输入宽电压范围。这种控制策略结合了全桥LLC谐振变换器,半桥LLC谐振变换器,变频控制和变脉宽控制的优点。在这种控制策略下,不同的输入电压决定了不同的电路工作模态。当输入电压很低的时候,电路采用了全桥电路和变频控制(FB_VF模态)。当输入电压升高到一定值,电路切换到全桥电路和移相控制(FB_PS模态)。当输入电压进一步上升时,电路切换到半桥电路和变频控制(FB_VF模态)。这种电路模态的切换是由数字信号处理器(digital signal processor, DSP)来实现的,不需要外加辅助电路,只需要修改一下软件。从轻载到重载下,LLC谐振变换器的原边MOSFET可以实现零电压开通(zero-voltage switching, ZVS),副边二极管可以实现零电流关断(zero-current switching, ZCS)。本文用一个额定功率300 W,输出电压450 V的LLC,输入电压20 V到120 V的谐振变换器的样机验证了这个优化的控制策略。实验结果显示,在这种控制策略下,变换器的最大工作效率可以达到95.7%,并且输入电压范围扩大了3倍。

Abstract

This paper proposes a new variable-mode control strategy that is applicable for LLC resonant converters operating in a wide input voltage range. This control strategy incorporates advantages from full-bridge LLC resonant converters, half-bridge LLC resonant converters, variable-frequency control mode, and phase-shift control mode. Under this control strategy, different input voltages determine the different operating modes of the circuit. When the input voltage is very low, it works in a full-bridge circuit and variable frequency mode (FB_VF mode). When the input voltage rises to a certain level, it shifts to a full-bridge circuit and phase-shifting control mode (FB_PS mode). When the input voltage further increases, it shifts into a half-bridge circuit and variable frequency mode (HB_VF mode). Such shifts are enabled by the digital signal processor (DSP), which means that no auxiliary circuit is needed, just a modification of the software. From light load to heavy load, the primary MOSFET for the LLC resonant converter can realize zero-voltage switching (ZVS), and the secondary rectifier diode can realize zero-current switching (ZCS). With an LLC resonant converter prototype with a 300 W rated power and a 450 V output voltage, as well as a resonant converter with 20–120 V input voltage, the experiments verified the proposed control strategy. Experimental results showed that under this control strategy, the maximum converter efficiency reaches 95.7% and the range of the input voltage expands threefold.

Key wordsLLC    Full bridge    Half bridge    Variable frequency    Phase shift    Wide input voltage range
收稿日期: 2016-01-20      出版日期: 2017-04-06
通讯作者: 林辉品,吕征宇     E-mail: linhuipin@126.com;eeluzy@cee.zju.edu.cn
Corresponding Author(s): Hui-pin LIN,Zheng-yu LU   
 引用本文:   
林辉品,靳晓光,解良,胡进,吕征宇. 一种新颖的用于宽输入电压范围的LLC谐振变换器的变模态控制策略[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(3): 410-422.
Hui-pin LIN,Xiao-guang JIN,Liang XIE,Jin HU,Zheng-yu LU. A new variable-mode control strategy for LLC resonant converters operating in a wide input voltage range. Front. Inform. Technol. Electron. Eng, 2017, 18(3): 410-422.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1600029
https://academic.hep.com.cn/fitee/CN/Y2017/V18/I3/410
1 Chen, W., Hong, X.Y., Wang, S.R., et al, 2010. High efficiency soft-switched step-up DC-DC converter with hybrid mode LLC+C resonant tank. 25th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1358–1364.
2 Fang, X., Hu, H.B., Shen, J., et al, 2012. An optimal design of the LLC resonant converter based on peak gain estimation. 27th Annual IEEE Applied Power Electronics Conf. and Exposition, p.1286–1291.
3 Fang, Y., Xu, D.H., Zhang, Y.J., et al, 2007. Design of high power density LLC resonant converter with extra wide input range. 22nd Annual IEEE Applied Power Electronics Conf., p.976–981.
4 Hamamura, S., Ninomiya, T., Yamamoto, M., et al, 2003. Combined PWM and PFM control for universal line voltage of a piezoelectric transformer off-line converter. IEEE Trans. Power Electron., 18(1):270–277.
5 Hu, J., Lin, H.P., Lu, Z.Y., et al, 2015. Flexible resonant tank for a combined converter to achieve an HPS and LED compatible driver. Front. Inform. Technol. Electron. Eng., 16(8):679–693.
6 Jang, J., Joung, M., Choi, B., et al, 2012. Dynamic analysis and control design of optocoupler-isolated LLC series resonant converters with wide input and load variations. IET Power Electron., 5(6):755–764.
7 Jiang, Z.H., 2006. Power management of hybrid photovoltaic—fuel cell power systems. IEEE Power Engineering Society General Meeting, p.3458–3463.
8 Jung, J.H., Kwon, J.G., 2007. Theoretical analysis and optimal design of LLC resonant converter. European Conf. on Power Electronics and Applications, p.1134–1143.
9 Liang, Z.G., Guo, R., Wang, G.Y., et al, 2010. A new wide input range high efficiency photovoltaic inverter. IEEE Energy Conversion Congress and Exposition, p.2937–2943.
10 Lin, B.R., Nian, Y.B., Shiau, T.Y., 2013. Resonant converter with fixed frequency control. IEEE Region 10 Conf. TENCON, p.1–6.
11 Rajaei, A., Mohamadian, M., Varjani, A.Y., 2013. Viennarectifier-based direct torque control of PMSG for wind energy application. IEEE Trans. Ind. Electron., 60(7): 2919–2929.
12 Steigerwald, R.L., 1988. A comparison of half-bridge resonant converter topologies. IEEE Trans. Power Electron., 3(2): 174–182.
13 Song, S.H., Kang, S.I., Hahm, N.K., 2003. Implementation and control of grid connected AC-DC-AC power converter for variable speed wind energy conversion systems. 18th Annual IEEE Applied Power Electronics Conf. and Exposition, p.154–158.
14 Tian, J., Su, C., Soltani, M., et al, 2014. Active power dispatch method for a wind farm central controller considering wake effect. 40th Annual Conf. of the IEEE Industrial Electronics Society, IECON, p.5450–5456.
15 Walker, G.R., Pierce, J.C., 2006. PhotoVoltaic DC-DC module integrated converter for novel cascaded and bypass grid connection topologies—design and optimisation. 37th IEEE Power Electronics Specialists Conf. Records, p.1767–1773.
16 Walker, G.R., Sernia, P.C., 2004. Cascaded DC-DC converter connection of photovoltaic modules. IEEE Trans. Power Electron., 19(4):1130–1139.
17 Wang, C.X., Lu, Z.X., Qiao, Y., 2013. A consideration of the wind power benefits in day-ahead scheduling of wind-coal intensive power systems. IEEE Trans. Power Syst., 28(1):236–245.
18 Yang, B., 2003. Topology Investigation of Front End DC/DC Converter for Distributed Power System. PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg, USA.
19 Zhang, Z., Thomsen, O.C., Andersen, M.A.E., 2009. A DC-DC converter with wide input voltage range for fuel cell and supercapacitor application. Int. Conf. on Power Electronics and Drive Systems, p.1324–1329.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed