Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (11): 1828-1842   https://doi.org/10.1631/FITEE.1601229
  本期目录
基于鲁棒法矢滤波和交替顶点更新的有效网格去噪
李涛1(), 汪俊2(), 刘浩2(), 刘利刚3()
1. 苏州科技大学数理学院,中国苏州市,215009
2. 南京航空航天大学机电学院,中国南京市,210016
3. 中国科学技术大学数学科学学院,中国合肥市,230026
Efficientmesh denoising via robust normal filtering and alternate vertex updating
Tao LI1(), Jun WANG2(), Hao LIU2(), Li-gang LIU3()
1. College of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou 215007, China
2. College of Mechanical and Electronics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
3. College of Mathematics Sciences, University of Science and Technology of China, Hefei 230026, China
 全文: PDF(1384 KB)  
摘要:

区分特征和噪声是网格去噪中最具挑战性的问题。本文基于鲁棒的引导法矢估计和交替顶点更新策略,研究了一种新的、保持特征的网格去噪方法。为了准确地捕捉特征周围的局部结构,我们提出了一种角点敏感的邻域(corner-aware neighborhood, CAN)方案。本文将CAN中所有面的总体法矢分布及其相应面的个体法矢影响相结合,提出了一种新的一致性度量方法,大大提高了引导法矢估计的可靠性。随着噪声水平的降低,我们用前次迭代的得到滤波法矢作为引导进行联合双边滤波,其思想与新出现的rolling guidance方法是一致的。在顶点更新过程中,我们在每次迭代时都根据滤波后的法线对顶点进行分类,并在各自的正则化约束下交替地对不同类型的顶点进行重新定位。对各种合成数据和实际数据的实验表明,该方法能适应高斯噪声和脉冲噪声等不同类型的噪声,且无论噪声沿法矢方向还是沿随机方向分布,都不会出现翻转的三角片。

Abstract

The most challenging problem in mesh denoising is to distinguish features from noise. Based on the robust guided normal estimation and alternate vertex updating strategy, we investigate a new feature-preserving mesh denoising method. To accurately capture local structures around features, we propose a corner-aware neighborhood (CAN) scheme. By combining both overall normal distribution of all faces in a CAN and individual normal influence of the interested face, we give a new consistency measuring method, which greatly improves the reliability of the estimated guided normals. As the noise level lowers, we take as guidance the previous filtered normals, which coincides with the emerging rolling guidance idea. In the vertex updating process, we classify vertices according to filtered normals at each iteration and reposition vertices of distinct types alternately with individual regularization constraints. Experiments on a variety of synthetic and real data indicate that our method adapts to various noise, both Gaussian and impulsive, no matter in the normal direction or in a random direction, with few triangles flipped.

Key wordsMesh denoising    Guided normal filtering    Alternate vertex updating    Corner-aware neighborhoods
收稿日期: 2016-05-04      出版日期: 2018-03-08
通讯作者: 李涛,汪俊,刘浩,刘利刚     E-mail: litao@mail.usts.edu.cn;wjun@nuaa.edu.cn;liuhao-01@nuaa.edu.cn;lgliu@ustc.edu.cn
Corresponding Author(s): Tao LI,Jun WANG,Hao LIU,Li-gang LIU   
 引用本文:   
李涛, 汪俊, 刘浩, 刘利刚. 基于鲁棒法矢滤波和交替顶点更新的有效网格去噪[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(11): 1828-1842.
Tao LI, Jun WANG, Hao LIU, Li-gang LIU. Efficientmesh denoising via robust normal filtering and alternate vertex updating. Front. Inform. Technol. Electron. Eng, 2017, 18(11): 1828-1842.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1601229
https://academic.hep.com.cn/fitee/CN/Y2017/V18/I11/1828
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed