Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2018, Vol. 19 Issue (9): 1166-1179   https://doi.org/10.1631/FITEE.1601296
  本期目录
多模块并联有源电力滤波器系统及其基于分相控制和实时总线通讯的新型容错控制策略
徐群伟1,2, 占金祥1, 肖龙1, 陈国柱1()
1. 浙江大学电气工程学院,中国杭州市,310027
2. 国网浙江省电力有限公司电力科学研究院,中国杭州市,310014
A multi-modular shunt active power filter system and its novel fault-tolerant strategy based on split-phase control and real-time bus communication
Qun-wei XU1,2, Jin-xiang ZHAN1, Long XIAO1, Guo-zhu CHEN1()
1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
2. State Grid Zhejiang Electric Power Research Institute, Hangzhou 310014, China
 全文: PDF(1705 KB)  
摘要:

首先,提出一种适用于大容量补偿的多模块并联有源电力滤波器系统。该系统中每个模块具备相同的电路拓扑、功能及控制器设计,有助于模块间协同控制的实现。模块指令信号由总指令信号与相应的分配系数相乘所得。其次,提出一种基于a-b-c坐标系下分相控制和实时总线通讯的新型容错控制策略。当某一相发生故障时,所提策略仅隔离故障桥臂而非停运整个模块,同时重新计算分配系数,将故障相的补偿容量转移到其他正常模块的相同相,使故障模块得以持续运行以及剩余可用功率器件优化利用。故障后电路的稳态分析证明系统具备高稳定性及控制可靠性,保证其工程应用价值。最后,搭建了实验样机,实验结果验证了所提多模块系统及其容错控制策略的可行性和有效性。

Abstract

We first present a new multi-modular shunt active power filter system suitable for large-capacity compensation. Each module in the system has the same circuit topology, system functionality, and controller design, to achieve coordination control among the modules. The module’s reference signals are obtained by multiplying the total reference signal by the respective distribution coefficient. Next, a novel fault-tolerant approach is proposed based on split-phase control in the a-b-c frame and real-time bus communication. When a phase fault occurs, instead of halting the whole module, the proposed strategy isolates only the faulted bridge arm, and then recalculates the distribution coefficients and transfers the compensation capacity to the same phases of the other normal modules, resulting in a continuous operation of the faulted module and optimization of the remaining usable power devices. Through steady-state analysis of the post-fault circuit, the system stability and control reliability are proven to be high enough to guarantee its engineering application value. Finally, a prototype is established and experimental results show the validity and feasibility of the proposed multi-modular system and its fault-tolerant control strategy.

Key wordsShunt active power filter    Fault-tolerant topology    Split-phase control    Bus communication
收稿日期: 2016-05-29      出版日期: 2018-12-03
通讯作者: 陈国柱     E-mail: gzchen@zju.edu.cn
Corresponding Author(s): Guo-zhu CHEN   
 引用本文:   
徐群伟, 占金祥, 肖龙, 陈国柱. 多模块并联有源电力滤波器系统及其基于分相控制和实时总线通讯的新型容错控制策略[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(9): 1166-1179.
Qun-wei XU, Jin-xiang ZHAN, Long XIAO, Guo-zhu CHEN. A multi-modular shunt active power filter system and its novel fault-tolerant strategy based on split-phase control and real-time bus communication. Front. Inform. Technol. Electron. Eng, 2018, 19(9): 1166-1179.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1601296
https://academic.hep.com.cn/fitee/CN/Y2018/V19/I9/1166
1 Akagi H, 2005. Active harmonic filters. Proc IEEE, 93(12): 2128–2141.
2 Bhattacharya A, Chakraborty C, Bhattacharya S, 2012. Parallelconnected shunt hybrid active power filters operating at different switching frequencies for improved performance. IEEE Trans Ind Electron, 59(11):4007–4019.
3 Chen Z, Luo YP, Chen M, 2012. Control and performance of a cascaded shunt active power filter for aircraft electric power system. IEEE Trans Ind Electron, 59(9):3614–3623.
4 Errabelli RR, Mutschler P, 2012. Fault-tolerant voltage source inverter for permanent magnet drives. IEEE Trans Power Electron, 27(2):500–508.
5 Gou B, Ge XL, Liu YC, et al., 2016. Load-current-based current sensor fault diagnosis and tolerant control scheme for traction inverters. Electron Lett, 52(20):1717–1719.
6 Guzman R, de Vicuna LG, Morales J, et al., 2016. Model-based control for a three-phase shunt active power filter. IEEE Trans Ind Electron, 63(7):3998–4007.
7 Karimi S, Poure P, Saadate S, 2009. Fast power switch failure detection for fault tolerant voltage source inverters using FPGA. IET Power Electron, 2(4):346–354.
8 Khadem SK, Basu M, Conlon MF, 2014. Harmonic power compensation capacity of shunt active power filter and its relationship with design parameters. IET Power Electron, 7(2):418–430.
9 Lee TL, Wang YC, Li JC, et al., 2015. Hybrid active filter with variable conductance for harmonic resonance suppression in industrial power systems. IEEE Trans Ind Electron, 62(2):746–756.
10 Lim PY, Azli NA, 2007. A modular structured multilevel inverter active power filter with unified constant-frequency integration control for nonlinear AC loads. 7th Int Conf on Power Electronics and Drive Systems, p.244–248.
11 Liu TF, Jiang ZP, 2015. A small-gain approach to robust event-triggered control of nonlinear systems. IEEE Trans Autom Contr, 60(8):2072–2085.
12 Naidu M, Gopalakrishnan S, Nehl TW, 2010. Fault tolerant permanent magnet motor drive topologies for automotive x-by-wire systems. IEEE Trans Ind Appl, 46(2):841–848.
13 Olm JM, Ramos GA, Costa-Castello R, 2011. Stability analysis of digital repetitive control systems under timevarying sampling period. IET Contr Theory Appl, 5(1): 29–37.
14 Ramos GA, Costa-Castello R, 2012. Power factor correction and harmonic compensation using second-order oddharmonic repetitive control. IET Contr Theory Appl, 6(11):1633–1644.
15 Sjolte J, Tjensvoll G, Molinas M, 2014. Reliability analysis of IGBT inverter for wave energy converter with focus on thermal cycling. 9th Int Conf on Ecological Vehicles and Renewable Energies, p.1–7.
16 Sun BG, Xie YX, Ma H, 2015. An enhanced repetitive control strategy for shunt active power filter with LCL output filter. 41stAnnual Conf of the IEEE Industrial Electronics Society, p.1351–1356.
17 Wang YF, Xu QW, Chen GZ, 2015. Simplified multi-modular shunt active power filter system and its modelling. IET Power Electron, 8(6):967–976.
18 Xu JM, Xie SJ, Tang T, 2014. Improved control strategy with grid-voltage feedforward for LCL-filter-based inverter connected to weak grid. IET Power Electron, 7(10): 2660–2671.
19 Zhang QM, Liu HJ, Chen HK, et al., 2008. A precise and adaptive algorithm for interharmonics measurement based on iterative DFT. IEEE Trans Power Del, 23(4): 1728–1735.
20 Zhou DH, Zhao J, Liu Y, 2016. Independent control scheme for nonredundant two-leg fault-tolerant back-to-back converter-fed induction motor drives. IEEE Trans Ind Electron, 63(11):6790–6800.
[1] FITEE-1166-18009-QWX_suppl_1 Download
[2] FITEE-1166-18009-QWX_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed