Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2017, Vol. 18 Issue (1): 68-85   https://doi.org/10.1631/FITEE.1601650
  本期目录
智能无人自主系统发展趋势
张涛1(),李清1,张长水1,梁华为2,李平3,王田苗4,李硕5,朱云龙5,吴澄1
1. 中国北京清华大学自动化系
2. 中国合肥中科院合肥物理科学研究院
3. 中国杭州浙江大学控制科学与工程学院
4. 中国北京航空航天大学机器人研究所
5. 中国沈阳中科院沈阳自动化所
Current trends in the development of intelligent unmanned autonomous systems
Tao ZHANG1(),Qing LI1,Chang-shui ZHANG1,Hua-wei LIANG2,Ping LI3,Tian-miao WANG4,Shuo LI5,Yun-long ZHU5,Cheng WU1
1. Department of Automation, Tsinghua University, Beijing 100084, China
2. Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
3. School of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China
4. Robotics Institute, Beihang University, Beijing 100191, China
5. Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
 全文: PDF(849 KB)  
摘要:

智能无人自主系统是人工智能的重要应用之一,其发展可大大推动人工智能技术的创新。本文通过其主要成就介绍了智能无人自主系统的发展趋势。并且,本文将相关技术分成了7个领域,包括人工智能技术、无人车、无人机、服务机器人、空间机器人、海洋机器人和无人车间/智能工厂。本文对每个领域的发展趋势进行了介绍。

Abstract

Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and de-velopments in each area are introduced.

Key wordsIntelligent unmanned autonomous system    Autonomous vehicle    Artificial intelligence    Robotics    Development trend
收稿日期: 2016-10-19      出版日期: 2017-02-27
通讯作者: 张涛     E-mail: taozhang@tsinghua.edu.cn
Corresponding Author(s): Tao ZHANG   
 引用本文:   
张涛,李清,张长水,梁华为,李平,王田苗,李硕,朱云龙,吴澄. 智能无人自主系统发展趋势[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(1): 68-85.
Tao ZHANG,Qing LI,Chang-shui ZHANG,Hua-wei LIANG,Ping LI,Tian-miao WANG,Shuo LI,Yun-long ZHU,Cheng WU. Current trends in the development of intelligent unmanned autonomous systems. Front. Inform. Technol. Electron. Eng, 2017, 18(1): 68-85.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1601650
https://academic.hep.com.cn/fitee/CN/Y2017/V18/I1/68
1 Abadi, M., Agarwal, A., Barham, P., , 2016. TensorFlow: large-scale machine learning on heterogeneous systems. arXiv:1603.04467.
2 Akin, D.L., Bowden, M.L., 2003. Human-robotic hybrids for deep space EVA: the space construction and orbital utility transport concept. AIAA Space, p.1–11.
3 Albu-Schaffer, A., Bertleff, W., Rebele, B., , 2006. ROKVISS—robotics component verification on ISS current experimental results on parameter identification. IEEE Int. Conf. on Robotics and Automation, p.3879–3885.
4 ARC Advisory Group, 2002. Collaborative Manufacturing Management Strategies.
5 Bacha, A., Bauman, C., Faruque, R., , 2008. Odin: Team VictorTango’s entry in the DARPA urban challenge. J. Field Robot., 25(8):467–492.
6 Barkmeyer, E.J., Christopher, N., Feng, S.C., , 1996. SIMA Reference Architecture Part 1: Activity Models. NISTIR 5939. National Institute of Standards and Tech-nology, Gaithersburg.
7 Brockman, G., Cheung, V., Pettersson, L., , 2016. OpenAI Gym. arXiv:1606.01540.
8 Canis, B., 2015. Unmanned aircraft systems (UAS): commer-cial outlook for a new industry. Congressional Research Service, 7–5700.
9 Chao, H.Y., Cao, Y.C., Chen, Y.Q., 2010. Autopilots for small unmanned aerial vehicles: a survey. Int. J. Contr. Automat. Syst., 8(1):36–44.
10 Chase, M.S., Gunness, K., Morris, L.J., , 2015. Emerging trends in China’s development of unmanned systems. Research Reports: RR-990-OSD, RAND Corp., Santa Monica. Available from
11 Chetlur, S., Woolley, C., Vandermersch, P., , 2014. cuDNN: efficient primitives for deep learning. arXiv: 1410.0759.
12 Cusumano, F., Lampariello, R., Hirzinger, G., 2004. Devel-opment of tele-operation control for a free-floating robot during the grasping of a tumbling target. Inte. Conf. on Intelligent Manipulation and Grasping, p.1–6.
13 Debus, T.J., Dougherty, S.P., 2009. Overview and perfor-mance of the front-end robotics enabling near-term demonstration (FREND) robotic arm. AIAA Infotech @Aerospace Conf., p.1–12.
14 DIN, 2016. German standardization roadmap industry 4.0, Version 2.
15 Fang, Z., Yang, S.C., Jain, S., , 2017. Robust autonomous flight in constrained and visually degraded shipboard environments. J. Field Robot., 34(1):25–52.
16 Feng, W.W., 2013. Intelligent remote control car Anki Drive. Available from
17 Flores-Abad, A., Ma, O., Pham, K., 2013. A review of robotics technologies for on-orbit services. ADA576377, Defense Technical Information Center, Fort Belvoir.
18 Funahashi, K., Nakamura, Y., 1993. Approximation of dy-namical systems by continuous time recurrent neural networks. Neur. Netw., 6(6):801–806.
19 Girshick, R., 2015. Fast R-CNN. IEEE Int. Conf. on Computer Vision, p.1440–1448.
20 Girshick, R., Donahue, J., Darrell, T., , 2014. Rich feature hierarchies for accurate object detection and semantic segmentation. IEEE Conf. on Computer Vision and Pat-tern Recognition, p.580–587.
21 Graves, A., Mohamed, A., Hinton, G.E., 2013. Speech recog-nition with deep recurrent neural networks. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, p.6645–6649.
22 Guizzo, E., 2011. How Google’s self-driving car works. IEEE Spectrum Online.
23 Gupta, S.G., Ghonge, M.M., Jawandhiya, P.M., 2013. Review of unmanned aircraft system (UAS). Int. J. Adv. Res. Comput. Eng. Technol., 2:1646–1658.
24 Harris, S., 2012. Out of the Loop: the human free future of unmanned aerial vehicles. Hoover Institution, Stanford University, USA.
25 Heinrich, J., Silver, D., 2016. Deep reinforcement learning from self-play in imperfect information games. arXiv: 1603.01121.
26 Hirzinger, G., Brunner, B., Dietrich, J., , 1994. ROTEX- the first remotely controlled robot in space. IEEE Int. Conf. on Robotics and Automation, p.2604–2611.
27 Hoc, J.M., 2000. From human-machine interaction to human- machine cooperation. Ergonomics, 43(7):833–843.
28 Hochreiter, S., Schmidhuber, J., 1997. Long short-term memory. Neur. Comput., 9(8):1735–1780.
29 Hong, Y.B., Sun, R.C., Lin, R., , 2014. Mopping module design and experiments of a multifunction floor cleaning robot. 11th World Congress on Intelligent Control and Automation, p.5097–5102.
30 Hsu, K., Murray, C., Cook, J., , 2013. China’s military unmanned aerial vehicle industry. US-China Economic and Security Review Commission, Washington D.C.
31 Hu, M.H., Liu, J.H., Chen, D.S., , 2013. Multifunctional nursing bed with bed and chair integration—the dream of living in bed for the elderly. Technol. Appl. Robot., 2013(2):42–46 (in Chinese).
32 Huang, P.S., He, X.D., Gao, J.F., , 2013. Learning deep structured semantic models for web search using click-through data. Proc. 22nd ACM Int. Conf. on Information & Knowledge Management, p.2333–2338.
33 Huang, W.L., Wen, D., Geng, J., , 2014. Task-specific performance evaluation of UGVs: case studies at the IVFC. IEEE Trans. Intell. Transp. Syst., 15(5):1969–1979.
34 Huang, Y., Wu, J., Liu, C.M., , 2010. Overview and key technologies of autonomous vehicles. Ordn. Ind. Autom., 29(11):8–13 (in Chinese).
35 Hubel, D.H., Wiesel, T.N., 1962. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol., 160(1):106–154.
36 Jia, Y.Q., Shelhamer, E., Donahue, J., , 2014. Caffe: convolutional architecture for fast feature embedding. Proc. 22nd ACM Int. Conf. on Multimedia, p.675–678.
37 Kandaswamy, I., Xia, T., Kazanzides, P., 2014. Strategies and models for cutting satellite insulation in telerobotic ser-vicing missions. IEEE Haptics Symp., p.467–472.
38 Kendoul, F., 2012. Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. J. Field Robot., 29(2):315–378.
39 Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, p.1097–1105.
40 Kuiken, T.A., Li, G.L., Lock, B.A., , 2009. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA, 301(6):619–628.
41 Landzettel, K., Preusche, C., Albu-Schaffer, A., , 2006. Robotic on-orbit servicing—DLR’s experience and per-spective. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4587–4594.
42 LeCun, Y., Bengio, Y., 1995. Convolutional networks for images, speech, and time series. In: Arbib, M.A. (Ed.) The Handbook of Brain Theory and Neural Networks. MIT Press, Cambridge, p.255–258.
43 LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Na-ture, 521(7553):436–444.
44 Lillicrap, T.P., Hunt, J.J., Pritzel, A., , 2015. Continuous control with deep reinforcement learning. arXiv:1509. 02971.
45 Long, A.M., Richards, M.G., Hasting, D.E., 2007. On-orbit servicing: a new value proposition for satellite design and operation. J. Spacecr. Rock., 44(4):964–976.
46 Lu, Y., Morris, K.C., Frechette, S., 2016. Current Standards Landscape for Smart Manufacturing Systems. NISTIR 8107, National Institute of Standards and Technology, Gaithersburg.
47 Luong, M.T., Pham, H., Manning, C.D., 2015. Effective ap-proaches to attention based neural machine translation. arXiv:1508.04025.
48 Ma, L., Xue, J.R., Kawabata, K., , 2015. Efficient sam-pling-based motion planning for on-road autonomous driving. IEEE Trans. Intell. Transp. Syst., 16(4):1–16.
49 Markoff, J., 2010. Google cars drive themselves. New York Times.
50 Martinez, R.V., Fish, C.R., Chen, X., , 2012. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Adv. Funct. Mater., 22(7):1376–1384.
51 Masanori, N., Chikara, H., Yasuo, I., , 1998. Results of the manipulator flight demonstration (MFD) flight oper-ation. spaceOp98, p.1–7.
52 Maza, I., Kondak, K., Bernard, M., , 2010. Multi-UAV cooperation and control for load transportation and de-ployment. J. Intell. Robot. Syst., 57:417–449.
53 Merino, L., Caballero, F., Mart�nez-de Dios, J.R., , 2006. A cooperative perception system for multiple UAVs: ap-plication to automatic detection of forest fires. J. Field Robot., 23(3-4):165–184.
54 Mikolov, T., Karafi�t, M., Burget, L., , 2010. Recurrent neural network based language model. INTERSPEECH, p.1045–1048.
55 Ministry of Industry and Information Technology of China (MIIT), Standardization Administration of China (SAC), 2015. National Smart Manufacturing Standards Archi-tecture Construction Guidance (in Chinese).
56 Mnih, V., Kavukcuoglu, K., Silver, D., , 2013. Playing Atari with deep reinforcement learning. arXiv:1312.5602.
57 Mnih, V., Heess, N., Graves, A., , 2014. Recurrent models of visual attention. Advances in Neural Information Processing Systems, p.2204–2212.
58 Montemerlo, M., Becker, J., Bhat, S., , 2008. Junior: the Stanford entry in the urban challenge. J. Field Robotics, 25(9):569–597.
59 Nagaty, A., Saeedi, S., Thibault, C., , 2013. Control and navigation framework for quadrotor helicopters. J. Intell. Robot. Syst., 70(1-4):1–12.
60 Obermark, J., Creamer, G., Kelm, B.E., , 2007. SUMO/ FREND: vision system for autonomous satellite grapple. SPIE, 6555:65550Y.
61 Oda, M., Inaba, N., Fukushima, Y., 1999. Space robot tech-nology experiments on NASDA’s ETS-VII satellite. Adv. Robot., 13(6-8):335–336.
62 Office of the Secretary of Defense (OSD), 2002. Unmanned aerial vehicles roadmap, 2002-2027. Department of Defense.
63 Office of the Secretary of Defense (OSD), 2005. Unmanned aircraft systems roadmap, 2005-2030. Department of Defense.
64 Oh, J., Chockalingam, V., Singh, S., , 2016. Control of memory, active perception, and action in minecraft. arXiv:1605.09128.
65 O’Shea, T.J., Clancy, T.C., 2016. Deep reinforcement learning radio control and signal detection with KeRLym, a Gym RL agent. arXiv:1605.09221.
66 Pan, Y.H., 2016. Heading toward artificial intelligence 2.0. Engineering, 2(4):409–413.
67 Preusche, C., Reintsema, D., Landzettel, K., , 2006. Ro-botics component verification on ISS ROKVISS- pre-liminary results for telepresence. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, p.4595–4601.
68 Rathbun, D., Kragelund, S., Pongpunwattana, A., , 2002. An evolution based path planning algorithm for autono-mous motion of a UAV through uncertain environments. 21st Digital Avionics Systems Conf., p.1–12.
69 Rebsamen, B., Guan, C.T., Zhang, H.H., , 2010. A brain controlled wheelchair to navigate in familiar environ-ments. IEEE Trans. Neur. Syst. Rehabil. Eng., 18(6):590–598.
70 Ren, J., Gao, X.G., Zheng, J.S., , 2010. Mission decision- making for UAV under dynamic environment. Syst. Eng. Electron., 32(1):100–103 (in Chinese).
71 Ren, S.Q., He, K.M., Girshick, R., , 2015. Faster R-CNN: towards real-time object detection with region proposal networks. Advances in Neural Information Processing Systems, p.91–99.
72 Rensink, R.A., 2000. The dynamic representation of scenes. Vis. Cogn., 7(1-3):17–42.
73 Sak, H., Senior, A., Beaufays, F., 2014. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. INTERSPEECH, p.338–342.
74 Sato, N., Wakabayashi, Y., 2001. JEMRMS design features and topics from testing. Proc. 6th Int. Symp. on Artificial Intelligence and Robotics & Automation in Space, p.1–7.
75 Settelmeyer, E., Oesterlin, W., Hartmann, R., , 1997. The Experimental Servicing Satellite—ESS. Int. Symp. on Space Technology and Science, p.617–621.
76 Shepherd, R.F., Ilievski, F., Choi, W., , 2011. Multigait soft robot. PNAS, 108(51):20400–20403.
77 Shi, H., Liu, X., 2014. Assessment method for autonomous mobility of UGV in a typical battlefield environment. Acta Armament., 35(S1):17–24 (in Chinese).
78 Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv:1409. 1556.
79 Stieber, M.E., McKay, M., Vukovich, G., , 1999. Vision- based sensing and control for space robotics applications. IEEE Trans. Instrum. Meas., 48(4):807–812.
80 Sullivan, B.R., Akin, D.L., 2001. A survey of serviceable spacecraft failures. AIAA Space Conf. and Exposition, p.1–8.
81 Sutskever, I., Vinyals, O., Le, Q.V., 2014. Sequence to se-quence learning with neural networks. Advances in Neural Information Processing Systems, p.3104–3112.
82 Sutton, R.S., Barto, A.G., 1998. Reinforcement Learning: an Introduction. Volume 1. MIT Press, Cambridge.
83 Szegedy, C., Liu, W., Jia, Y.Q., , 2015. Going deeper with convolutions. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.1–9.
84 Taylor, L.W., Ramakrishnan, J., 1992. Continuum modeling of the space shuttle remote manipulator system. Proc. IEEE Conf. on Decision and Control, p.626–631.
85 Theano Development Team, 2016. Theano: a Python frame-work for fast computation of mathematical expressions. arXiv:1605.02688.
86 Tisdale, J., Zuwhan, K., Hedrick, J.K., 2009. Autonomous UAV path planning and estimation. IEEE Robot. Autom. Mag., 16(2):35–42.
87 Urmson, C., Anhalt, J., Bagnell, D., , 2008. Autonomous driving in urban environments: boss and the urban chal-lenge. J. Field Robot., 25(8):425–466.
88 Valavanis, K.P., 2007. Introduction. In: Valavanis, K.P. (Ed.), Advances in Unmanned Aerial Vehicles. Springer Neth-erlands, Dordrecht, p.3–13.
89 Valavanis, K.P., Vachtsevanos, G.J., 2014. Handbook of Unmanned Aerial Vehicles. Springer Publishing Com-pany.
90 van Hasselt, H., Guez, A., Silver, D., 2015. Deep reinforce-ment learning with double q-learning. arXiv:1509.06461.
91 Vinyals, O., Toshev, A., Bengio, S., , 2015. Show and tell: a neural image caption generator. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, p.3156–3164.
92 Wang, F.Z., 2016. Google released the product of smart home: Google Home. Available from (in Chinese).
93 Wang, X.H., Yadav, V., Balakrishnan, S.N., 2007. Coopera-tive UAV formation flying with obstacle collision avoidance. IEEE Trans. Contr. Syst. Technol., 15(4):672–679.
94 Wikipedia, 2016a. Unmanned aerial vehicle. Available from
95 Wikipedia, 2016b. Unmanned combat aerial vehicle. Availabel from
96 Wikipedia, 2016c. Human-in-the-loop. Available from
97 Xu, K., Ba, J., Kiros, R., , 2015. Show, attend and tell: Neural image caption generation with visual attention. arXiv:1502.03044.
98 Yim, M., Shen, W.M., Salemi, B., , 2007. Modular self-reconfigurable robot systems. IEEE Robot. Autom. Mag., 14(1):43–52.
99 Zhang, D.D., 2016. America upgraded the death UAV to increase the life time and strengthen operational capabil-ity. Available from (in Chinese).
100 Zhao, P., Chen, J.J., Song, Y., , 2012. Design of a control system for an autonomous vehicle based on adaptive-PID. Int. J. Adv. Robot. Syst., 9(2):559–568.
101 Zimpfer, D., Spehar, P., 1996. STS-71 Shuttle/Mir GNC mis-sion overview. Adv. Astronaut. Sci., 93:441–460.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed