Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2019, Vol. 20 Issue (8): 1109-1118   https://doi.org/10.1631/FITEE.1700148
  本期目录
基于暗通道先验的单幅图像快速去雾算法
岳泊暄(), 刘康玲, 汪子扬, 梁军()
浙江大学工业控制国家重点实验室,中国杭州市,310027
Accelerated haze removal for a single image by dark channel prior
Bo-xuan YUE(), Kang-ling LIU, Zi-yang WANG, Jun LIANG()
State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1957 KB)  
摘要:

在雾气中,可见光的散射降低了图像可见度。目前,去雾仍是图像处理应用的一个挑战。为实现去雾,提出一种基于单个像素的去雾加速算法。不同于基于区块的方法,所提方法分别估计每个区域的变换矩阵和大气光参数,其中加速的关键在于所有参数能在一次遍历中获得。然后,对传输映射进行双边过滤,恢复像素之间的关系。通过线性模糊模型恢复后,对恢复的图像进行调整,以提高对比度、光照强度和饱和度,尤其是补偿由相应波长引起的不同通道的光强误差。实验结果表明,该方法在处理速率方面优于已有的最先进去雾算法。与其他去雾方法比较和引入定量准则(峰信噪比、可检测边际速率、信息熵差)验证该方法有效。

Abstract

Haze scatters light transmitted in the air and reduces the visibility of images. Dealing with haze is still a challenge for image processing applications nowadays. For the purpose of haze removal, we propose an accelerated dehazing method based on single pixels. Unlike other methods based on regions, our method estimates the transmission map and atmospheric light for each pixel independently, so that all parameters can be evaluated in one traverse, which is a key to acceleration. Then, the transmission map is bilaterally filtered to restore the relationship between pixels. After restoration via the linear hazy model, the restored images are tuned to improve the contrast, value, and saturation, in particular to offset the intensity errors in different channels caused by the corresponding wavelengths. The experimental results demonstrate that the proposed dehazing method outperforms the state-of-the-art dehazing methods in terms of processing speed. Comparisons with other dehazing methods and quantitative criteria (peak signal-to-noise ratio, detectable marginal rate, and information entropy difference) are introduced to verify its performance.

Key wordsHaze removal    Dark channel prior    Hazy image model    Bilateral filtering
出版日期: 2019-09-23
通讯作者: 岳泊暄,梁军     E-mail: ybx90@outlook.com;jliang@iipc.zju.edu.cn
Corresponding Author(s): Bo-xuan YUE,Jun LIANG   
 引用本文:   
岳泊暄, 刘康玲, 汪子扬, 梁军. 基于暗通道先验的单幅图像快速去雾算法[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(8): 1109-1118.
Bo-xuan YUE, Kang-ling LIU, Zi-yang WANG, Jun LIANG. Accelerated haze removal for a single image by dark channel prior. Front. Inform. Technol. Electron. Eng, 2019, 20(8): 1109-1118.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1700148
https://academic.hep.com.cn/fitee/CN/Y2019/V20/I8/1109
[1] FITEE-1109-19009-BXY_suppl_1 Download
[2] FITEE-1109-19009-BXY_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed