Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2019, Vol. 20 Issue (5): 716-730   https://doi.org/10.1631/FITEE.1700737
  本期目录
基于质量感知的水下图像自适应压缩方法
蔡雅琼(), 邹海霞(), 袁飞()
厦门大学水声通信与海洋信息技术教育部重点实验室,中国厦门市,361005
Adaptive compression method for underwater images based on perceived quality estimation
Ya-qiong CAI(), Hai-xia ZOU(), Fei YUAN()
Key Laboratory of Underwater Acoustic Communication and Marine Information Technology Ministry of Education, Xiamen University, Xiamen 361005, China
 全文: PDF(2232 KB)  
摘要:

水下图像压缩是水声图像传输系统中必不可少并且至关重要的一个环节,有效的预测感知压缩图像的质量能使系统在压缩过程更好的调整压缩率,提高图像传输通信系统的效率。本文首先分别对压缩感知和嵌入式编码两种压缩策略下的水下压缩图像进行质量感知,然后利用图像活动性IAM(Image Activity Measurement)与BPP-SSIM(Bits Per Pixel and Structural SIMilarity)曲线间的映射进行建模并获得模型参数,从而根据图像的空域活动性、压缩率和压缩策略预测图像的压缩质量。实验结果表明本文所建立的模型能有效拟合水下图像的压缩质量曲线,根据模型中参数所具有的规律性能在小误差范围内预测出水下压缩图像的感知质量。本文所提出的方法能够有效的预测感知水下图像的压缩质量,并有效权衡压缩率与压缩质量之间的关系,减小发送端的数据缓存压力,提高水下图像通信系统的效率。

Abstract

Underwater image compression is an important and essential part of an underwater image transmission system. An assessment and prediction method of effectively compressed image quality can assist the system in adjusting its compression ratio during the image compression process, thereby improving the efficiency of the image transmission system. This study first estimates the perceived quality of underwater image compression based on embedded coding compression and compressive sensing, then builds a model based on the mapping between image activity measurement (IAM) and bits per pixel and structural similarity (BPP-SSIM) curves, next obtains model parameters by linear fitting, and finally predicts the perceived quality of the image compression method based on IAM, compression ratio, and compression strategy. Experimental results show that the model can effectively fit the quality curve of underwater image compression. According to the rules of parameters in this model, the perceived quality of underwater compressed images can be estimated within a small error range. The presented method can effectively estimate the perceived quality of underwater compressed images, balance the relationship between the compression ratio and compression quality, reduce the pressure on the data cache, and thus improve the efficiency of the underwater image communication system.

Key wordsUnderwater image compression    Set partitioning in hierarchical trees    Compressive sensing    Compression quality estimation
收稿日期: 2017-11-09      出版日期: 2019-07-08
通讯作者: 蔡雅琼,邹海霞,袁飞     E-mail: caiyaqiong@stu.xmu.edu.cn;850605461@qq.com;yuanfei@xmu.edu.cn
Corresponding Author(s): Ya-qiong CAI,Hai-xia ZOU,Fei YUAN   
 引用本文:   
蔡雅琼, 邹海霞, 袁飞. 基于质量感知的水下图像自适应压缩方法[J]. Frontiers of Information Technology & Electronic Engineering, 2019, 20(5): 716-730.
Ya-qiong CAI, Hai-xia ZOU, Fei YUAN. Adaptive compression method for underwater images based on perceived quality estimation. Front. Inform. Technol. Electron. Eng, 2019, 20(5): 716-730.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1700737
https://academic.hep.com.cn/fitee/CN/Y2019/V20/I5/716
[1] FITEE-0716-19008-YQC_suppl_1 Download
[2] FITEE-0716-19008-YQC_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed