Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2021, Vol. 22 Issue (9): 1234-1246   https://doi.org/10.1631/FITEE.2000426
  本期目录
基于含隐变量的贝叶斯网络质量相关局部加权的非平稳过程软测量方法
徐玉雪1, 王云2, 严天宏1(), 何雨辰1(), 王君1, 顾德3, 杜海平4, 李卫华5
1. 中国计量大学机电工程学院,中国杭州市,310018
2. 浙江同济科技职业学院机电工程系,中国杭州市,311231
3. 江南大学自动化研究所轻工过程先进控制教育部重点实验室,中国无锡市,214122
4. 伍伦贡大学电气、计算机和电信工程学院,澳大利亚伍伦贡市,NSW 2522
5. 伍伦贡大学机械、材料、机电和生物医学工程学院,澳大利亚伍伦贡市,NSW 2522
Quality-related locally weighted soft sensing for non-stationary processes by a supervised Bayesian network with latent variables
Yuxue XU1, Yun WANG2, Tianhong YAN1(), Yuchen HE1(), Jun WANG1, De GU3, Haiping DU4, Weihua LI5
1. College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou 310018, China
2. Mechanical and Electrical Engineering Department, Zhejiang Tongji Vocational College of Science and Technology, Hangzhou 311231, China
3. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Institute of Automation, Jiangnan University, Wuxi 214122, China
4. School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
5. School of Mechanical, Materials, Mechatronic, and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
 全文: PDF(10665 KB)  
摘要:

在工业过程中,软测量技术被广泛用于预测难以测量的质量变量。构建一个应对过程非平稳性的自适应模型非常必要。本文针对非平稳过程,设计了一种基于含有隐变量贝叶斯网络的质量相关局部加权软测量方法。提出一种有监督贝叶斯网络提取质量相关的隐变量,并应用于一种双层相似度测量算法。所提软测量方法试图通过质量相关信息为非平稳过程寻找到一般方法,且详细解释了局部相似度和窗口置信度的概念。通过一个数值算例和脱丁烷塔的应用验证了所提方法的性能。结果表明所提方法预测关键质量变量的精确度优于竞争方法

Abstract

Soft sensors are widely used to predict quality variables which are usually hard to measure. It is necessary to construct an adaptive model to cope with process non-stationaries. In this study, a novel quality-related locally weighted soft sensing method is designed for non-stationary processes based on a Bayesian network with latent variables. Specifically, a supervised Bayesian network is proposed where quality-oriented latent variables are extracted and further applied to a double-layer similarity measurement algorithm. The proposed soft sensing method tries to find a general approach for non-stationary processes via qualityrelated information where the concepts of local similarities and window confidence are explained in detail. The performance of the developed method is demonstrated by application to a numerical example and a debutanizer column. It is shown that the proposed method outperforms competitive methods in terms of the accuracy of predicting key quality variables.

Key wordsSoft sensor    Supervised Bayesian network    Latent variables    Locally weighted modeling    Quality prediction
收稿日期: 2020-08-24      出版日期: 2021-11-15
通讯作者: 严天宏,何雨辰     E-mail: thyan@cjlu.edu.cn;yche@cjlu.edu.cn
Corresponding Author(s): Tianhong YAN,Yuchen HE   
 引用本文:   
徐玉雪, 王云, 严天宏, 何雨辰, 王君, 顾德, 杜海平, 李卫华. 基于含隐变量的贝叶斯网络质量相关局部加权的非平稳过程软测量方法[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(9): 1234-1246.
Yuxue XU, Yun WANG, Tianhong YAN, Yuchen HE, Jun WANG, De GU, Haiping DU, Weihua LI. Quality-related locally weighted soft sensing for non-stationary processes by a supervised Bayesian network with latent variables. Front. Inform. Technol. Electron. Eng, 2021, 22(9): 1234-1246.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2000426
https://academic.hep.com.cn/fitee/CN/Y2021/V22/I9/1234
[1] FITEE-1234-20007-YXX_suppl_1 Download
[2] FITEE-1234-20007-YXX_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed