Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2022, Vol. 23 Issue (2): 186-206   https://doi.org/10.1631/FITEE.2100041
  本期目录
一种智慧法院的全流程智能化审判系统
魏斌1(), 况琨2(), 孙常龙2,3(), 冯珺4(), 张雅婷3, 朱新力5, 周江洪2, 翟寅生5, 吴飞2()
1. 浙江大学光华法学院, 中国杭州市, 310008
2. 浙江大学计算机科学与技术学院, 中国杭州市, 310027
3. 阿里巴巴达摩院, 中国杭州市, 310099
4. 国家电网浙江省电力有限公司, 中国杭州市, 310007
5. 浙江省高级人民法院, 中国杭州市, 310012
A full-process intelligent trial system for smart court
Bin WEI1(), Kun KUANG2(), Changlong SUN2,3(), Jun FENG4(), Yating ZHANG3, Xinli ZHU5, Jianghong ZHOU2, Yinsheng ZHAI5, Fei WU2()
1. Guanghua Law School, Zhejiang University, Hangzhou 310008, China
2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
3. Alibaba Group, Hangzhou 310099, China
4. State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310007, China
5. Zhejiang Higher People’s Court, Hangzhou 310012, China
 全文: PDF(818 KB)  
摘要:

在智慧法院建设中,为实现更高效、公平和可解释的审判程序,我们提出一种全流程智能化审判系统(FITS)来提供智能化协助。在所提FITS中,介绍了对构建智慧法院至关重要的任务,包括信息抽取、证据分类、问题生成、对话摘要、判决预测和判决文书生成。具体而言,准备工作是从法律文本中抽取要素,从而帮助法官高效地确定案情。利用提取的属性,通过在所有证据中确认一致性等标准来证实每条证据的有效性。在庭审过程中,设计了自动发问机器人,协助法官主持庭审。它由一个表示程序性发问的有限状态机和一个通过对法庭辩论中的话语上下文编码进而生成事实问题的深度学习模型组成。此外,FITS还在多任务学习框架下,实时总结法庭辩论中产生的争议焦点,并在对话检查摘要(DIS)模块中生成摘要审判记录。为支持法官决策,采用了一阶逻辑来表达法律知识,并将其嵌入深度神经网络(DNN)来预测判决。最后,提出一种基于注意力和反事实的自然语言生成(AC-NLG)方法生成法院判决。

Abstract

In constructing a smart court, to provide intelligent assistance for achieving more efficient, fair, and explainable trial proceedings, we propose a full-process intelligent trial system (FITS). In the proposed FITS, we introduce essential tasks for constructing a smart court, including information extraction, evidence classification, question generation, dialogue summarization, judgment prediction, and judgment document generation. Specifically, the preliminary work involves extracting elements from legal texts to assist the judge in identifying the gist of the case efficiently. With the extracted attributes, we can justify each piece of evidence’s validity by establishing its consistency across all evidence. During the trial process, we design an automatic questioning robot to assist the judge in presiding over the trial. It consists of a finite state machine representing procedural questioning and a deep learning model for generating factual questions by encoding the context of utterance in a court debate. Furthermore, FITS summarizes the controversy focuses that arise from a court debate in real time, constructed under a multi-task learning framework, and generates a summarized trial transcript in the dialogue inspectional summarization (DIS) module. To support the judge in making a decision, we adopt first-order logic to express legal knowledge and embed it in deep neural networks (DNNs) to predict judgments. Finally, we propose an attentional and counterfactual natural language generation (AC-NLG) to generate the court’s judgment.

Key wordsIntelligent trial system    Smart court    Evidence analysis    Dialogue summarization    Focus of controversy    Automatic questioning    Judgment prediction
收稿日期: 2021-01-24      出版日期: 2022-03-31
通讯作者: 魏斌,况琨,孙常龙,冯珺,吴飞     E-mail: srsysj@zju.edu.cn;kunkuang@zju.edu.cn;changlong.scl@taobao.com;JuneFeng.81@gmail.com;wufei@zju.edu.cn
Corresponding Author(s): Bin WEI,Kun KUANG,Changlong SUN,Jun FENG,Fei WU   
 引用本文:   
魏斌, 况琨, 孙常龙, 冯珺, 张雅婷, 朱新力, 周江洪, 翟寅生, 吴飞. 一种智慧法院的全流程智能化审判系统[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(2): 186-206.
Bin WEI, Kun KUANG, Changlong SUN, Jun FENG, Yating ZHANG, Xinli ZHU, Jianghong ZHOU, Yinsheng ZHAI, Fei WU. A full-process intelligent trial system for smart court. Front. Inform. Technol. Electron. Eng, 2022, 23(2): 186-206.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2100041
https://academic.hep.com.cn/fitee/CN/Y2022/V23/I2/186
[1] FITEE-0186-22002-BW_suppl_1 Download
[2] FITEE-0186-22002-BW_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed