Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2022, Vol. 23 Issue (8): 1217-1228   https://doi.org/10.1631/FITEE.2100473
  本期目录
基于改进YOLOv4的水下垃圾清理机器人视觉检测算法
田满军1,2(), 李霞丽2(), 孔诗涵3(), 吴立成2(), 喻俊志3,4()
1. 公安部第一研究所, 中国北京市, 100048
2. 中央民族大学信息工程学院, 中国北京市, 100081
3. 北京大学工学院先进制造与机器人系, 中国北京市, 100871
4. 中国科学院自动化研究所复杂系统管理与控制国家重点实验室, 中国北京市, 100190
A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot
Manjun TIAN1,2(), Xiali LI2(), Shihan KONG3(), Licheng WU2(), Junzhi YU3,4()
1. First Research Institute of the Ministry of Public Security of PRC, Beijing 100048, China
2. School of Information Engineering, Minzu University of China, Beijing 100081, China
3. Department of Advanced Manufacturing and Robotics, College of Engineering, Peking University, Beijing 100871, China
4. State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(17128 KB)  
摘要:

为解决水环境污染问题,依托基于视觉的水下垃圾自主清理机器人,提出一种基于改进YOLOv4的垃圾检测方法,可实现高速、高精度的目标检测。具体而言,选择YOLOv4算法作为执行目标检测的基本神经网络框架。为进一步提高检测精度,将传统YOLOv4改进为四尺度检测算法;为提高检测速度,对新模型进行模型剪枝操作。同时,将所提方法应用于水下机器人,实现了自主垃圾收集作业。检测速度可达66.67帧/秒,平均准确率可达95.099%;实验结果表明,改进后的YOLOv4算法在检测速度和精度方面均表现优秀。

Abstract

To tackle the problem of aquatic environment pollution, a vision-based autonomous underwater garbage cleaning robot has been developed in our laboratory. We propose a garbage detection method based on a modified YOLOv4, allowing high-speed and high-precision object detection. Specifically, the YOLOv4 algorithm is chosen as a basic neural network framework to perform object detection. With the purpose of further improvement on the detection accuracy, YOLOv4 is transformed into a four-scale detection method. To improve the detection speed, model pruning is applied to the new model. By virtue of the improved detection methods, the robot can collect garbage autonomously. The detection speed is up to 66.67 frames/s with a mean average precision (mAP) of 95.099%, and experimental results demonstrate that both the detection speed and the accuracy of the improved YOLOv4 are excellent.

Key wordsObject detection    Aquatic environment    Garbage cleaning robot    Modified YOLOv4
收稿日期: 2021-10-01      出版日期: 2022-09-02
通讯作者: 喻俊志     E-mail: tianmanjun2018@163.com;xiaer_li@163.com;kongshihan@pku.edu.cn;wulicheng@tsinghua.edu.cn;junzhi.yu@ia.ac.cn
Corresponding Author(s): Junzhi YU   
 引用本文:   
田满军, 李霞丽, 孔诗涵, 吴立成, 喻俊志. 基于改进YOLOv4的水下垃圾清理机器人视觉检测算法[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(8): 1217-1228.
Manjun TIAN, Xiali LI, Shihan KONG, Licheng WU, Junzhi YU. A modified YOLOv4 detection method for a vision-based underwater garbage cleaning robot. Front. Inform. Technol. Electron. Eng, 2022, 23(8): 1217-1228.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2100473
https://academic.hep.com.cn/fitee/CN/Y2022/V23/I8/1217
[1] FITEE-1217-22007-MJT_suppl_1 Download
[2] FITEE-1217-22007-MJT_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed