Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2022, Vol. 23 Issue (10): 1494-1510   https://doi.org/10.1631/FITEE.2100530
  本期目录
APFD:面向移动轨迹大数据的出租车路径推荐方法
张文勇1(), 夏大文1(), 常国艳5, 胡杨2, 霍雨佳1, 冯夫健1, 李艳涛3, 李华青4()
1. 贵州民族大学数据科学与信息工程学院, 中国贵阳市, 550025
2. 贵州交通技师学院汽车工程系, 中国贵阳市, 550008
3. 重庆大学计算机科学学院, 中国重庆市, 400044
4. 西南大学电子与信息工程学院, 中国重庆市, 400715
5. 贵州医科大学附属医院, 中国贵阳市, 550001
APFD: an effective approach to taxi route recommendation with mobile trajectory big data
Wenyong ZHANG1(), Dawen XIA1(), Guoyan CHANG5, Yang HU2, Yujia HUO1, Fujian FENG1, Yantao LI3, Huaqing LI4()
1. College of Data Science and Information Engineering, Guizhou Minzu University, Guiyang 550025, China
2. Department of Automotive Engineering, Guizhou Traffic Technician and Transportation College, Guiyang 550008, China
3. College of Computer Science, Chongqing University, Chongqing 400044, China
4. College of Electronic and Information Engineering, Southwest University, Chongqing 400715, China
5. The Affiliated Hospital of Guizhou Medical University, Guiyang 550001, China
 全文: PDF(3769 KB)  
摘要:

随着数据驱动智能交通系统的迅猛发展,高效的出租车路径推荐方法成为智慧城市的研究热点。基于移动轨迹大数据,提出一种基于人工势场(APF)和Dijkstra方法的出租车路径推荐方法。为提高路径推荐效率,提出一种区域提取方法,该方法通过原点和终点坐标搜索包含最优路径的区域。基于APF方法,提出一种有效的冗余节点去除方法。最后,通过Dijkstra方法推荐最优路径。将APFD方法应用于仿真地图和北京四环的实际路网。在地图上随机选取20对起点和终点坐标,采用APFD方法、蚁群(AC)算法、贪婪算法(A*)、APF、迅速探索随机树(RRT)、非支配排序遗传算法-II(NSGA-II)、粒子群算法(PSO)和Dijkstra算法进行最短路径推荐。在最短路径规划方面,与AC、A*、APF、RRT、NSGA-II和PSO相比,APFD的路径规划能力分别提高了1.45%–39.56%、4.64%–54.75%、8.59%–37.25%、5.06%–45.34%、0.94%–20.40%和2.43%–38.31%。与Dijkstra算法相比,APFD的执行效率提高了1.03–27.75倍。此外,在北京四环实际路网中,APFD推荐最短路径的能力优于AC、A*、APF、RRT、NSGA-II和PSO,且APFD的执行效率高于Dijkstra方法。

Abstract

With the rapid development of data-driven intelligent transportation systems, an efficient route recommendation method for taxis has become a hot topic in smart cities. We present an effective taxi route recommendation approach (called APFD) based on the artificial potential field (APF) method and Dijkstra method with mobile trajectory big data. Specifically, to improve the efficiency of route recommendation, we propose a region extraction method that searches for a region including the optimal route through the origin and destination coordinates. Then, based on the APF method, we put forward an effective approach for removing redundant nodes. Finally, we employ the Dijkstra method to determine the optimal route recommendation. In particular, the APFD approach is applied to a simulation map and the real-world road network on the Fourth Ring Road in Beijing. On the map, we randomly select 20 pairs of origin and destination coordinates and use APFD with the ant colony (AC) algorithm, greedy algorithm (A*), APF, rapid-exploration random tree (RRT), non-dominated sorting genetic algorithm-II (NSGA-II), particle swarm optimization (PSO), and Dijkstra for the shortest route recommendation. Compared with AC, A*, APF, RRT, NSGA-II, and PSO, concerning shortest route planning, APFD improves route planning capability by 1.45%–39.56%, 4.64%–54.75%, 8.59%–37.25%, 5.06%–45.34%, 0.94%–20.40%, and 2.43%–38.31%, respectively. Compared with Dijkstra, the performance of APFD is improved by 1.03–27.75 times in terms of the execution efficiency. In addition, in the real-world road network, on the Fourth Ring Road in Beijing, the ability of APFD to recommend the shortest route is better than those of AC, A*, APF, RRT, NSGA-II, and PSO, and the execution efficiency of APFD is higher than that of the Dijkstra method.

Key wordsBig data analytics    Region extraction    Artificial potential field    Dijkstra    Route recommendation    GPS trajectories of taxis
收稿日期: 2021-11-14      出版日期: 2022-10-31
通讯作者: 夏大文,李华青     E-mail: gzmdzwy@gzmu.edu.cn;dwxia@gzmu.edu.cn;huaqingli@swu.edu.cn
Corresponding Author(s): Dawen XIA,Huaqing LI   
 引用本文:   
张文勇, 夏大文, 常国艳, 胡杨, 霍雨佳, 冯夫健, 李艳涛, 李华青. APFD:面向移动轨迹大数据的出租车路径推荐方法[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(10): 1494-1510.
Wenyong ZHANG, Dawen XIA, Guoyan CHANG, Yang HU, Yujia HUO, Fujian FENG, Yantao LI, Huaqing LI. APFD: an effective approach to taxi route recommendation with mobile trajectory big data. Front. Inform. Technol. Electron. Eng, 2022, 23(10): 1494-1510.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2100530
https://academic.hep.com.cn/fitee/CN/Y2022/V23/I10/1494
[1] FITEE-1494-22004-WYZ_suppl_1 Download
[2] FITEE-1494-22004-WYZ_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed