Interpreting the vulnerability of power systems in cascading failures using multi-graph convolutional networks
Supaporn LONAPALAWONG1(), Changsheng CHEN2(), Can WANG3(), Wei CHEN1()
1. State Key Lab of CAD & CG, Zhejiang University, Hangzhou 310058, China 2. China Electric Power Research Institute, Beijing 100192, China 3. College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
Analyzing the vulnerability of power systems in cascading failures is generally regarded as a challenging problem. Although existing studies can extract some critical rules, they fail to capture the complex subtleties under different operational conditions. In recent years, several deep learning methods have been applied to address this issue. However, most of the existing deep learning methods consider only the grid topology of a power system in terms of topological connections, but do not encompass a power system’s spatial information such as the electrical distance to increase the accuracy in the process of graph convolution. In this paper, we construct a novel power-weighted line graph that uses power system topology and spatial information to optimize the edge weight assignment of the line graph. Then we propose a multi-graph convolutional network (MGCN) based on a graph classification task, which preserves a power system’s spatial correlations and captures the relationships among physical components. Our model can better handle the problem with power systems that have parallel lines, where our method can maintain desirable accuracy in modeling systems with these extra topology features. To increase the interpretability of the model, we present the MGCN using layer-wise relevance propagation and quantify the contributing factors of model classification.
LONAPALAWONG Supaporn, 陈长胜, 王灿, 陈为. 连锁故障中电力系统脆弱性的多图卷积网络分析[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(12): 1848-1861.
Supaporn LONAPALAWONG, Changsheng CHEN, Can WANG, Wei CHEN. Interpreting the vulnerability of power systems in cascading failures using multi-graph convolutional networks. Front. Inform. Technol. Electron. Eng, 2022, 23(12): 1848-1861.