Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2022, Vol. 23 Issue (9): 1324-1337   https://doi.org/10.1631/FITEE.2200102
  本期目录
基于三维参数模型重建的心脏病理视觉识别
肖金肖1(), 李岩松1(), 田沄1(), 徐冬溶2,3, 李鹏辉1, 赵世凤1, 潘云鹤3
1. 北京师范大学人工智能学院, 中国北京市, 100875
2. 哥伦比亚大学精神病学系和纽约州立精神病学研究所, 美国纽约市, 10032
3. 浙江大学计算机科学与技术学院, 中国杭州市, 310027
Visual recognition of cardiac pathology based on 3D parametric model reconstruction
Jinxiao XIAO1(), Yansong LI1(), Yun TIAN1(), Dongrong XU2,3, Penghui LI1, Shifeng ZHAO1, Yunhe PAN3
1. School of Artificial Intelligence, Beijing Normal University, Beijing 100875, China
2. Department of Psychiatry, Columbia University & New York State Psychiatric Institute, New York 10032, USA
3. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
 全文: PDF(7488 KB)  
摘要:

心脏图像的视觉识别对于心脏病理诊断和治疗具有重要意义。由于可用标注数据集有限,传统方法通常基于三维心脏图像的二维切片对病理分类特征进行提取,难以确保心脏解剖结构的整体一致性。为此,本文提出一种基于三维参数模型重建的心脏病理分类方法。首先,基于收缩末期和舒张末期时相心脏图像的多个三维心脏成像数据重建三维心脏模型。其次,基于重建的三维心脏模型,通过统计形状模型方法构建三维参数模型。然后,基于三维统计形状模型及其视觉知识约束对心脏数据进行增强。最后,提取不同时相的三维心脏模型的形状和运动特征,对心脏病理进行分类。在STACOM公开挑战赛的ACDC数据集上的实验验证了所提方法的优越性和有效性。

Abstract

Visual recognition of cardiac images is important for cardiac pathology diagnosis and treatment. Due to the limited availability of annotated datasets, traditional methods usually extract features directly from two-dimensional slices of three-dimensional (3D) heart images, followed by pathological classification. This process may not ensure the overall anatomical consistency in 3D heart. A new method for classification of cardiac pathology is therefore proposed based on 3D parametric model reconstruction. First, 3D heart models are reconstructed based on multiple 3D volumes of cardiac imaging data at the end-systole (ES) and end-diastole (ED) phases. Next, based on these reconstructed 3D hearts, 3D parametric models are constructed through the statistical shape model (SSM), and then the heart data are augmented via the variation in shape parameters of one 3D parametric model with visual knowledge constraints. Finally, shape and motion features of 3D heart models across two phases are extracted to classify cardiac pathology. Comprehensive experiments on the automated cardiac diagnosis challenge (ACDC) dataset of the Statistical Atlases and Computational Modelling of the Heart (STACOM) workshop confirm the superior performance and efficiency of this proposed approach.

Key words3D visual knowledge    3D parametric model    Cardiac pathology diagnosis    Data augmentation
收稿日期: 2022-03-16      出版日期: 2022-10-21
通讯作者: 田沄     E-mail: xiaojinxiao@mail.bnu.edu.cn;liyansong@mail.bnu.edu.cn;tianyun@bnu.edu.cn
Corresponding Author(s): Yun TIAN   
 引用本文:   
肖金肖, 李岩松, 田沄, 徐冬溶, 李鹏辉, 赵世凤, 潘云鹤. 基于三维参数模型重建的心脏病理视觉识别[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(9): 1324-1337.
Jinxiao XIAO, Yansong LI, Yun TIAN, Dongrong XU, Penghui LI, Shifeng ZHAO, Yunhe PAN. Visual recognition of cardiac pathology based on 3D parametric model reconstruction. Front. Inform. Technol. Electron. Eng, 2022, 23(9): 1324-1337.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2200102
https://academic.hep.com.cn/fitee/CN/Y2022/V23/I9/1324
[1] FITEE-1324-22004-JXX_suppl_1 Download
[2] FITEE-1324-22004-JXX_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed