Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2022, Vol. 23 Issue (12): 1862-1870   https://doi.org/10.1631/FITEE.2200294
  本期目录
输入时滞分数阶(0<α<1)奇异系统的观测器控制
李丙新1,2(), 赵相飞1,2(), 张雪峰3(), 赵新1,2,4()
1. 南开大学机器人与信息自动化研究所, 中国天津市, 300071
2. 南开大学天津市智能机器人技术重点实验室, 中国天津市, 300071
3. 东北大学理学院, 中国沈阳市, 110819
4. 南开大学深圳研究院, 中国深圳市, 518083
Observer-based control for fractional-order singular systems with order α (0 < α < 1) and input delay
Bingxin LI1,2(), Xiangfei ZHAO1,2(), Xuefeng ZHANG3(), Xin ZHAO1,2,4()
1. Institute of Robotics and Automatic Information System, Nankai University, Tianjin 300071, China
2. Tianjin Key Laboratory of Intelligent Robotics, Nankai University, Tianjin 300071, China
3. College of Sciences, Northeastern University, Shenyang 110819, China
4. Shenzhen Research Institute of Nankai University, Shenzhen 518083, China
 全文: PDF(647 KB)  
摘要:

本文研究输入时滞分数阶(0<α<1)奇异系统的观测器控制问题。基于史密斯预测器和逼近误差,有输入时滞的系统近似等价于无输入时滞的系统。进一步地,基于线性矩阵不等式方法,提出基于观测器控制的充要条件。该条件由于包含等式约束,因此是非严格线性矩阵不等式条件,在使用工具箱求解时会遇到一些麻烦。因此,本文改进了基于严格线性矩阵不等式的条件。最后,通过数值算例和直流电机实例说明了基于严格线性矩阵不等式的条件的有效性。

Abstract

In this paper, observer-based control for fractional-order singular systems with order α (0 < α < 1) and input delay is studied. On the basis of the Smith predictor and approximation error, the system with input delay is approximately equivalent to the system without input delay. Furthermore, based on the linear matrix inequality (LMI) technique, the necessary and sufficient condition of observer-based control is proposed. Since the condition is a nonstrict LMI, including the equality constraint, it will lead to some trouble when solving problems using toolbox. Thus, the strict LMI-based condition is improved in the paper. Finally, a numerical example and a direct current motor example are given to illustrate the effectiveness of the strict LMI-based condition.

Key wordsObserver-based control    Singular systems    Fractional order    Input delay    Linear matrix inequality
收稿日期: 2022-07-07      出版日期: 2023-07-05
通讯作者: 赵新     E-mail: libingxin2017@163.com;1120170124@mail.nankai.edu.cn;zhangxuefeng@mail.neu.edu.cn;zhaoxin@nankai.edu.cn
Corresponding Author(s): Xin ZHAO   
 引用本文:   
李丙新, 赵相飞, 张雪峰, 赵新. 输入时滞分数阶(0<α<1)奇异系统的观测器控制[J]. Frontiers of Information Technology & Electronic Engineering, 2022, 23(12): 1862-1870.
Bingxin LI, Xiangfei ZHAO, Xuefeng ZHANG, Xin ZHAO. Observer-based control for fractional-order singular systems with order α (0 < α < 1) and input delay. Front. Inform. Technol. Electron. Eng, 2022, 23(12): 1862-1870.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.2200294
https://academic.hep.com.cn/fitee/CN/Y2022/V23/I12/1862
[1] FITEE-1862-22009-BXL_suppl_1 Download
[2] FITEE-1862-22009-BXL_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed