Please wait a minute...
Frontiers of Information Technology & Electronic Engineering

ISSN 2095-9184

Frontiers of Information Technology & Electronic Engineering  2021, Vol. 22 Issue (2): 210-221   https://doi.org/10.1631/FITEE.1900504
  本期目录
跨维数线性连续系统的解和稳定性
张庆乐(), 王彪(), 冯俊娥()
山东大学数学学院,中国济南市,250100
Solution and stability of continuous-time cross-dimensional linear systems
Qing-le ZHANG(), Biao WANG(), Jun-e FENG()
School of Mathematics, Shandong University, Jinan 250100, China
 全文: PDF(463 KB)  
摘要:

利用V-加法和V-乘法研究了维数有界的跨维数线性连续系统(CCDLSs)的解和稳定性。使用积分迭代法,得到CCDLSs的解。基于解的代数表示以及矩阵的若尔当分解,给出相应的充要条件判断一个CCDLS在给定初始状态后是否渐进稳定。该条件提供了一种确定吸引域以及吸引域间关系的方法。然后,研究了所有可镇定的初始状态,并提出相应控制器的设计方法。最后,给出两个例子说明理论结果的有效性。

Abstract

We investigate the solution and stability of continuous-time cross-dimensional linear systems (CCDLSs) with dimension bounded by V-addition and V-product. Using the integral iteration method, the solution to CCDLSs can be obtained. Based on the new algebraic expression of the solution and the Jordan decomposition method of matrix, a necessary and sufficient condition is derived for judging whether a CCDLS is asymptotically stable with a given initial state. This condition demonstrates a method for finding the domain of attraction and its relationships. Then, all the initial states that can be stabilized are studied, and a method for designing the corresponding controller is proposed. Two examples are presented to illustrate the validity of the theoretical results.

Key wordsCross-dimensional    V-addition    V-product    Asymptotic stability    Stabilization
收稿日期: 2019-09-19      出版日期: 2021-03-10
通讯作者: 张庆乐,王彪,冯俊娥     E-mail: zqlcfc03@163.com;wangbiao9956@163.com;fengjune@sdu.edu.cn
Corresponding Author(s): Qing-le ZHANG,Biao WANG,Jun-e FENG   
 引用本文:   
张庆乐, 王彪, 冯俊娥. 跨维数线性连续系统的解和稳定性[J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(2): 210-221.
Qing-le ZHANG, Biao WANG, Jun-e FENG. Solution and stability of continuous-time cross-dimensional linear systems. Front. Inform. Technol. Electron. Eng, 2021, 22(2): 210-221.
 链接本文:  
https://academic.hep.com.cn/fitee/CN/10.1631/FITEE.1900504
https://academic.hep.com.cn/fitee/CN/Y2021/V22/I2/210
[1] FITEE-0210-20006-QLZ_suppl_1 Download
[2] FITEE-0210-20006-QLZ_suppl_2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed