|
|
Second-order differentiability with respect to
parameters for differential equations with adaptive delays |
|
Second-order differentiability with respect to
parameters for differential equations with adaptive delays |
Yuming CHEN1,Qingwen HU2,Jianhong WU3, |
1.Department of Mathematics,
Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; 2.Department of Mathematics
and Statistics, Memorial University of Newfoundland, St. John’s, NL
A1C 5S7, Canada; 3.Department of Mathematics
and Statistics, York University, Toronto, ON M3J 1P3, Canada; |
|
Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured populationgrowth with state-dependent time delay. SIAM J Appl Math, 1992, 52: 855―869
doi: 10.1137/0152048
|
|
Ait Dads E H, Ezzinbi K. Boundedness and almost periodicityfor some statedependent delay differential equations. Electron J Differential Equations, 2002, 67: 1―13
|
|
Al-Omari J F M, Gourley S A. Dynamics of a stage-structuredpopulation model incorporating a state-dependent maturation delay. Nonlinear Anal Real World Appl, 2005, 6: 13―33
doi: 10.1016/j.nonrwa.2004.04.002
|
|
Arino O, Hadeler K P, Hbid M L. Existence of periodic solutions for delay differentialequations with state dependent delay. JDifferential Equations, 1998, 144: 263―301
doi: 10.1006/jdeq.1997.3378
|
|
Arino O, Hbid M L, Bravo de la Parra R. A mathematicalmodel of growth of population of fish in the larval stage: density-dependenceeffects. Math Biosci, 1998, 150: 1―20
doi: 10.1016/S0025-5564(98)00008-X
|
|
Arino O, Sánchez E. Delays included in populationdynamics. Mathematical Modeling of PopulationDynamics, Banach Center Publications, 2004, 63: 9―146
|
|
Arino O, Sánchez E, Fathallah A. State-dependent delay differential equations in populationdynamics: modeling and analysis. FieldsInst Commun, 2001, 29: 19―36
|
|
Bartha M. Periodicsolutions for differential equations with state-dependent delay andpositive feedback. Nonlinear Anal, 2003, 53: 839―857
doi: 10.1016/S0362-546X(03)00039-7
|
|
Bélair J. Populationmodels with state-dependent delays. LectureNotes in Pure and Appl Math, 1991, 131: 165―176
|
|
Bélair J. Stabilityanalysis of an age-structured model with a state-dependent delay. Canad Appl Math Quart, 1998, 6: 305―319
|
|
Brokate M, Colonius F. Linearizing equations withstate-dependent delays. Appl Math Optim, 1990, 21: 45―52
doi: 10.1007/BF01445156
|
|
Cao Y, Fan J, Gard T C. The effect of state-dependent delay on a stage-structuredpopulation growth model. Nonlinear Anal, 1992, 19: 95―105
doi: 10.1016/0362-546X(92)90113-S
|
|
Cooke K L, Huang W Z. On the problem of linearizationfor state-dependent delay differential equations. Proc Amer Math Soc, 1996, 124: 1417―1426
doi: 10.1090/S0002-9939-96-03437-5
|
|
Györi I, Hartung F. On the exponential stabilityof a state-dependent delay equation. ActaSci Math (Szeged), 2000, 66: 71―84
|
|
Hale J K, Ladeira L A C. Differentiability with respectto delays. J Differential Equations, 1991, 92: 14―26
doi: 10.1016/0022-0396(91)90061-D
|
|
Hartung F. OnDifferentiability of SolutionsWith State-dependent Delay Equations. Ph D dissertation, University of Texas at Dallas, 1995
|
|
Hartung F. Linearizedstability in periodic functional differential equations with state-dependentdelays. J Comput Appl Math, 2005, 174: 201―211
doi: 10.1016/j.cam.2004.04.006
|
|
Hartung F, Krisztin T, Walther H-O, Wu J. FunctionalDifferential Equations with State-dependent Delays: Theory and Applications. In: Canada A, Drabek P, Fonda A, eds. Handbook of Differential Equations: Ordinary Differential Equations,Vol 3. Amsterdam: Elsevier, North Holland, 2006
doi: 10.1016/S1874-5725(06)80009-X
|
|
Hartung F, Turi J. On differentiability of solutionswith respect to parameters in state-dependent delay equations. J Differential Equations, 1997, 135: 192―237
doi: 10.1006/jdeq.1996.3238
|
|
Hartung F, Turi J. Linearized stability in functionaldifferential equations with statedependent delays. Discrete Contin Dynam Systems, 2001, Added Volume: 416―425
|
|
Kalton N. Quasi-BanachSpaces. Handbook of the Geometry of BanachSpaces, Vol 2. Amsterdam: North-Holland, 2003, 1099―1130
doi: 10.1016/S1874-5849(03)80032-3
|
|
Krisztin T. Alocal unstable manifold for differential equations with state-dependentdelay. Discrete Contin Dyn Syst, 2003, 9: 993―1028
doi: 10.3934/dcds.2003.9.993
|
|
Krisztin T, Arino O. The two-dimensional attractorof a differential equation with state-dependent delay. J Dynam Differential Equations, 2001, 13: 453―522
doi: 10.1023/A:1016635223074
|
|
Li Y, Kuang Y. Periodic solutions in periodicstate-dependent delay equations and population models. Proc Amer Math Soc, 2002, 130: 1345―1353
doi: 10.1090/S0002-9939-01-06444-9
|
|
Magal P, Arino O. Existence of periodic solutionsfor a state dependent delay differential equation. J Differential Equations, 2000, 165: 61―95
doi: 10.1006/jdeq.1999.3759
|
|
Mahaffy J M, Bélair J, Mackey M C. Hematopoietic model with moving boundary condition andstate-dependent delay: application in erythropoiesis. J Theor Biol, 1998, 190: 135―146
doi: 10.1006/jtbi.1997.0537
|
|
Niri K. Oscillationsin differential equations with state-dependent delays. Nelīnīĭınī Koliv, 2003, 6: 252―259
|
|
Ouifki R, Hbid M L. Periodic solutions for aclass of functional differential equations with state-dependent delayclose to zero. Math Models Methods ApplSci, 2003, 13: 807―841
doi: 10.1142/S0218202503002738
|
|
Rai S, Robertson R L. Analysis of a two-stage populationmodel with space limitations and state-dependent delay. Canad Appl Math Quart, 2000, 8: 263―279
|
|
Rai S, Robertson R L. A stage-structured populationmodel with state-dependent delay. Int JDiffer Equ Appl, 2002, 6: 77―91
|
|
Smith H L. Some results on the existence of periodic solutions of state-dependentdelay differential equations. Pitman ResNotes Math Ser, 1992, 272: 218―222
|
|
Walther H-O. Stable periodic motion of a system with state dependent delay. Differential Integral Equations, 2002, 15: 923―944
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|