Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Front. Math. China  2010, Vol. 5 Issue (2): 221-286   https://doi.org/10.1007/s11464-010-0005-9
  Research articles 本期目录
Second-order differentiability with respect to parameters for differential equations with adaptive delays
Second-order differentiability with respect to parameters for differential equations with adaptive delays
Yuming CHEN1,Qingwen HU2,Jianhong WU3,
1.Department of Mathematics, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; 2.Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; 3.Department of Mathematics and Statistics, York University, Toronto, ON M3J 1P3, Canada;
 全文: PDF(633 KB)  
Abstract:In this paper, we study the second-order differentiability of solutions with respect to parameters in a class of delay differential equations, where the evolution of the delay is governed explicitly by a differential equation involving the state variable and the parameters. We introduce the notion of locally complete triple-normed linear space and obtain an extension of the well-known uniform contraction principle in such spaces. We then apply this extended principle and obtain the second-order differentiability of solutions with respect to parameters in the W1,p-norm (1≤p<∞).
Key wordsDelay differential equation    adaptive delay    differentiability of solution    state-dependent delay    uniform contraction principle    locally complete triple-normed linear space
出版日期: 2010-06-05
 引用本文:   
. Second-order differentiability with respect to parameters for differential equations with adaptive delays[J]. Front. Math. China, 2010, 5(2): 221-286.
Yuming CHEN, Qingwen HU, Jianhong WU, . Second-order differentiability with respect to parameters for differential equations with adaptive delays. Front. Math. China, 2010, 5(2): 221-286.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-010-0005-9
https://academic.hep.com.cn/fmc/CN/Y2010/V5/I2/221
Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured populationgrowth with state-dependent time delay. SIAM J Appl Math, 1992, 52: 855―869

doi: 10.1137/0152048
Ait Dads E H, Ezzinbi K. Boundedness and almost periodicityfor some statedependent delay differential equations. Electron J Differential Equations, 2002, 67: 1―13
Al-Omari J F M, Gourley S A. Dynamics of a stage-structuredpopulation model incorporating a state-dependent maturation delay. Nonlinear Anal Real World Appl, 2005, 6: 13―33

doi: 10.1016/j.nonrwa.2004.04.002
Arino O, Hadeler K P, Hbid M L. Existence of periodic solutions for delay differentialequations with state dependent delay. JDifferential Equations, 1998, 144: 263―301

doi: 10.1006/jdeq.1997.3378
Arino O, Hbid M L, Bravo de la Parra R. A mathematicalmodel of growth of population of fish in the larval stage: density-dependenceeffects. Math Biosci, 1998, 150: 1―20

doi: 10.1016/S0025-5564(98)00008-X
Arino O, Sánchez E. Delays included in populationdynamics. Mathematical Modeling of PopulationDynamics, Banach Center Publications, 2004, 63: 9―146
Arino O, Sánchez E, Fathallah A. State-dependent delay differential equations in populationdynamics: modeling and analysis. FieldsInst Commun, 2001, 29: 19―36
Bartha M. Periodicsolutions for differential equations with state-dependent delay andpositive feedback. Nonlinear Anal, 2003, 53: 839―857

doi: 10.1016/S0362-546X(03)00039-7
Bélair J. Populationmodels with state-dependent delays. LectureNotes in Pure and Appl Math, 1991, 131: 165―176
Bélair J. Stabilityanalysis of an age-structured model with a state-dependent delay. Canad Appl Math Quart, 1998, 6: 305―319
Brokate M, Colonius F. Linearizing equations withstate-dependent delays. Appl Math Optim, 1990, 21: 45―52

doi: 10.1007/BF01445156
Cao Y, Fan J, Gard T C. The effect of state-dependent delay on a stage-structuredpopulation growth model. Nonlinear Anal, 1992, 19: 95―105

doi: 10.1016/0362-546X(92)90113-S
Cooke K L, Huang W Z. On the problem of linearizationfor state-dependent delay differential equations. Proc Amer Math Soc, 1996, 124: 1417―1426

doi: 10.1090/S0002-9939-96-03437-5
Györi I, Hartung F. On the exponential stabilityof a state-dependent delay equation. ActaSci Math (Szeged), 2000, 66: 71―84
Hale J K, Ladeira L A C. Differentiability with respectto delays. J Differential Equations, 1991, 92: 14―26

doi: 10.1016/0022-0396(91)90061-D
Hartung F. OnDifferentiability of SolutionsWith State-dependent Delay Equations. Ph D dissertation, University of Texas at Dallas, 1995
Hartung F. Linearizedstability in periodic functional differential equations with state-dependentdelays. J Comput Appl Math, 2005, 174: 201―211

doi: 10.1016/j.cam.2004.04.006
Hartung F, Krisztin T, Walther H-O, Wu J. FunctionalDifferential Equations with State-dependent Delays: Theory and Applications. In: Canada A, Drabek P, Fonda A, eds. Handbook of Differential Equations: Ordinary Differential Equations,Vol 3. Amsterdam: Elsevier, North Holland, 2006

doi: 10.1016/S1874-5725(06)80009-X
Hartung F, Turi J. On differentiability of solutionswith respect to parameters in state-dependent delay equations. J Differential Equations, 1997, 135: 192―237

doi: 10.1006/jdeq.1996.3238
Hartung F, Turi J. Linearized stability in functionaldifferential equations with statedependent delays. Discrete Contin Dynam Systems, 2001, Added Volume: 416―425
Kalton N. Quasi-BanachSpaces. Handbook of the Geometry of BanachSpaces, Vol 2. Amsterdam: North-Holland, 2003, 1099―1130

doi: 10.1016/S1874-5849(03)80032-3
Krisztin T. Alocal unstable manifold for differential equations with state-dependentdelay. Discrete Contin Dyn Syst, 2003, 9: 993―1028

doi: 10.3934/dcds.2003.9.993
Krisztin T, Arino O. The two-dimensional attractorof a differential equation with state-dependent delay. J Dynam Differential Equations, 2001, 13: 453―522

doi: 10.1023/A:1016635223074
Li Y, Kuang Y. Periodic solutions in periodicstate-dependent delay equations and population models. Proc Amer Math Soc, 2002, 130: 1345―1353

doi: 10.1090/S0002-9939-01-06444-9
Magal P, Arino O. Existence of periodic solutionsfor a state dependent delay differential equation. J Differential Equations, 2000, 165: 61―95

doi: 10.1006/jdeq.1999.3759
Mahaffy J M, Bélair J, Mackey M C. Hematopoietic model with moving boundary condition andstate-dependent delay: application in erythropoiesis. J Theor Biol, 1998, 190: 135―146

doi: 10.1006/jtbi.1997.0537
Niri K. Oscillationsin differential equations with state-dependent delays. Nelīnīĭınī Koliv, 2003, 6: 252―259
Ouifki R, Hbid M L. Periodic solutions for aclass of functional differential equations with state-dependent delayclose to zero. Math Models Methods ApplSci, 2003, 13: 807―841

doi: 10.1142/S0218202503002738
Rai S, Robertson R L. Analysis of a two-stage populationmodel with space limitations and state-dependent delay. Canad Appl Math Quart, 2000, 8: 263―279
Rai S, Robertson R L. A stage-structured populationmodel with state-dependent delay. Int JDiffer Equ Appl, 2002, 6: 77―91
Smith H L. Some results on the existence of periodic solutions of state-dependentdelay differential equations. Pitman ResNotes Math Ser, 1992, 272: 218―222
Walther H-O. Stable periodic motion of a system with state dependent delay. Differential Integral Equations, 2002, 15: 923―944
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed