lk,s-Singular values and spectral radius of rectangular tensors
lk,s-Singular values and spectral radius of rectangular tensors
Chen LING1(), Liqun QI2
1. School of Science, Hangzhou Dianzi University, Hangzhou 310018, China; 2. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of lk,s-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,s-singular values /vectors, some properties of the related lk,s-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors.
. lk,s-Singular values and spectral radius of rectangular tensors[J]. Frontiers of Mathematics in China, 2013, 8(1): 63-83.
Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors. Front Math Chin, 2013, 8(1): 63-83.
Chang K C, Pearson K, Zhang T. Perron Frobenius theorem for nonnegative tensors. Commun Math Sci , 2008, 6: 507-520
2
Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl , 2010, 370: 284-294 doi: 10.1016/j.jmaa.2010.04.037
3
Dahl D, Leinass J M, Myrheim J, E. Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl , 2007, 420: 711-725 doi: 10.1016/j.laa.2006.08.026
4
Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev , 1935, 47: 777-780 doi: 10.1103/PhysRev.47.777
5
Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl , 2013, 438: 738-749 doi: 10.1016/j.laa.2011.02.042
6
Gaubert S, Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions. Trans Amer Math Soc , 2004, 356: 4931-4950 doi: 10.1090/S0002-9947-04-03470-1
7
Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity , 1975, 5: 341-361 doi: 10.1007/BF00126996
8
Knowles J K, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal , 1977, 63: 321-336 doi: 10.1007/BF00279991
9
Krein M G, Rutman M A. Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat Nauk , 1948, 3(1): 23 (in Russian); Amer Math Soc Transl, No 26 (English transl)
10
Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing, 1 . 2005, 129-132
11
Nussbaum R D. Convexity and log convexity for the spectral radius. Linear Algebra Appl , 1986, 73: 59-122 doi: 10.1016/0024-3795(86)90233-8
12
Nussbaum R D. Hilbert’s Projective Metric and Iterated Nonlinear Maps. Mem Amer Math Soc, Vol 75, No 391 . Providence: Amer Math Soc, 1988
13
Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput , 2005, 40: 1302-1324 doi: 10.1016/j.jsc.2005.05.007
14
Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal , 1990, 109: 1-37 doi: 10.1007/BF00377977
15
Schr?inger E. Die gegenw?tige situation in der quantenmechanik. Naturwissenschaften , 1935, 23: 807-812 , 823-828 , 844-849 doi: 10.1007/BF01491891
16
Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity , 1996, 44: 89-96 doi: 10.1007/BF00042193
17
Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China , 2011, 6(2): 363-378 doi: 10.1007/s11464-011-0108-y