Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  2013, Vol. 8 Issue (1): 63-83   https://doi.org/10.1007/s11464-012-0265-7
  RESEARCH ARTICLE 本期目录
lk,s-Singular values and spectral radius of rectangular tensors
lk,s-Singular values and spectral radius of rectangular tensors
Chen LING1(), Liqun QI2
1. School of Science, Hangzhou Dianzi University, Hangzhou 310018, China; 2. Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China
 全文: PDF(185 KB)   HTML
Abstract

The real rectangular tensors arise from the strong ellipticity condition problem in solid mechanics and the entanglement problem in quantum physics. In this paper, we study the singular values/vectors problem of real nonnegative partially symmetric rectangular tensors. We first introduce the concepts of lk,s-singular values/vectors of real partially symmetric rectangular tensors. Then, based upon the presented properties of lk,s-singular values /vectors, some properties of the related lk,s-spectral radius are discussed. Furthermore, we prove two analogs of Perron-Frobenius theorem and weak Perron-Frobenius theorem for real nonnegative partially symmetric rectangular tensors.

Key wordsNonnegative rectangular tensor    lk    s-singular value    s-spectral radius    irreducibility    weak irreducibility
收稿日期: 2012-04-28      出版日期: 2013-02-01
Corresponding Author(s): LING Chen,Email:macling@hdu.edu.cn   
 引用本文:   
. lk,s-Singular values and spectral radius of rectangular tensors[J]. Frontiers of Mathematics in China, 2013, 8(1): 63-83.
Chen LING, Liqun QI. lk,s-Singular values and spectral radius of rectangular tensors. Front Math Chin, 2013, 8(1): 63-83.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-012-0265-7
https://academic.hep.com.cn/fmc/CN/Y2013/V8/I1/63
1 Chang K C, Pearson K, Zhang T. Perron Frobenius theorem for nonnegative tensors. Commun Math Sci , 2008, 6: 507-520
2 Chang K C, Qi L, Zhou G. Singular values of a real rectangular tensor. J Math Anal Appl , 2010, 370: 284-294
doi: 10.1016/j.jmaa.2010.04.037
3 Dahl D, Leinass J M, Myrheim J, E. Ovrum E. A tensor product matrix approximation problem in quantum physics. Linear Algebra Appl , 2007, 420: 711-725
doi: 10.1016/j.laa.2006.08.026
4 Einstein A, Podolsky B, Rosen N. Can quantum-mechanical description of physical reality be considered complete? Phys Rev , 1935, 47: 777-780
doi: 10.1103/PhysRev.47.777
5 Friedland S, Gaubert S, Han L. Perron-Frobenius theorem for nonnegative multilinear forms and extensions. Linear Algebra Appl , 2013, 438: 738-749
doi: 10.1016/j.laa.2011.02.042
6 Gaubert S, Gunawardena J. The Perron-Frobenius theorem for homogeneous, monotone functions. Trans Amer Math Soc , 2004, 356: 4931-4950
doi: 10.1090/S0002-9947-04-03470-1
7 Knowles J K, Sternberg E. On the ellipticity of the equations of non-linear elastostatics for a special material. J Elasticity , 1975, 5: 341-361
doi: 10.1007/BF00126996
8 Knowles J K, Sternberg E. On the failure of ellipticity of the equations for finite elastostatic plane strain. Arch Ration Mech Anal , 1977, 63: 321-336
doi: 10.1007/BF00279991
9 Krein M G, Rutman M A. Linear operators leaving invariant a cone in a Banach space. Uspekhi Mat Nauk , 1948, 3(1): 23 (in Russian); Amer Math Soc Transl, No 26 (English transl)
10 Lim L-H. Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi- Sensor Adaptive Processing, 1 . 2005, 129-132
11 Nussbaum R D. Convexity and log convexity for the spectral radius. Linear Algebra Appl , 1986, 73: 59-122
doi: 10.1016/0024-3795(86)90233-8
12 Nussbaum R D. Hilbert’s Projective Metric and Iterated Nonlinear Maps. Mem Amer Math Soc, Vol 75, No 391 . Providence: Amer Math Soc, 1988
13 Qi L. Eigenvalues of a real supersymmetric tensor. J Symbolic Comput , 2005, 40: 1302-1324
doi: 10.1016/j.jsc.2005.05.007
14 Rosakis P. Ellipticity and deformations with discontinuous deformation gradients in finite elastostatics. Arch Ration Mech Anal , 1990, 109: 1-37
doi: 10.1007/BF00377977
15 Schr?inger E. Die gegenw?tige situation in der quantenmechanik. Naturwissenschaften , 1935, 23: 807-812 , 823-828 , 844-849
doi: 10.1007/BF01491891
16 Wang Y, Aron M. A reformulation of the strong ellipticity conditions for unconstrained hyperelastic media. J Elasticity , 1996, 44: 89-96
doi: 10.1007/BF00042193
17 Yang Y, Yang Q. Singular values of nonnegative rectangular tensors. Front Math China , 2011, 6(2): 363-378
doi: 10.1007/s11464-011-0108-y
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed