Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  2014, Vol. 9 Issue (6): 1401-1410   https://doi.org/10.1007/s11464-014-0427-x
  本期目录
Transitivity of varietal hypercube networks
Li XIAO,Jin CAO,Jun-Ming XU()
School of Mathematical Sciences, University of Science and Technology of China, Wentsun Wu Key Laboratory of CAS, Hefei 230026, China
 全文: PDF(107 KB)  
Abstract

The varietal hypercube VQn is a variant of the hypercube Qn and has better properties than Qn with the same number of edges and vertices. This paper proves that VQn is vertex-transitive. This property shows that when VQn is used to model an interconnection network, it is high symmetrical and obviously superior to other variants of the hypercube such as the crossed cube.

Key wordsCombinatorics    graph    transitivity    varietal hypercube network
收稿日期: 2013-01-01      出版日期: 2014-10-29
Corresponding Author(s): Jun-Ming XU   
 引用本文:   
. [J]. Frontiers of Mathematics in China, 2014, 9(6): 1401-1410.
Li XIAO,Jin CAO,Jun-Ming XU. Transitivity of varietal hypercube networks. Front. Math. China, 2014, 9(6): 1401-1410.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-014-0427-x
https://academic.hep.com.cn/fmc/CN/Y2014/V9/I6/1401
1 Cao J, Xiao L, Xu J-M. Cycles and paths embedded in varietal hypercubes. J Univ Sci Technol China, 2014, 44(9): 782-789
2 Cheng S-Y, Chuang J-H. Varietal hypercube—a new interconnection networks topology for large scale multicomputer. Proc Internat Conf Parallel Distributed Systems, 1994: 703-708
3 Huang J, Xu J-M. Multiply-twisted hypercube with four or less dimensions is vertextransitive. Chinese Quart J Math, 2005, 20(4): 430-434
4 Jiang M, Hu X-Y, Li Q-L. Fault-tolerant diameter and width diameter of varietal hypercubes. Appl Math J Chinese Univ Ser A, 2010, 25(3): 372-378 (in Chinese)
5 Kulasinghe P, Bettayeb S. Multiply-twisted hypercube with five or more dimensions is not vertex-transitive. Inform Process Lett, 1995, 53: 33-36
https://doi.org/10.1016/0020-0190(94)00167-W
6 Ma M-J, Xu J-M. Algebraic properties and panconnectivity of folded hypercubes. Ars Combinatoria, 2010, 95: 179-186
7 Wang J-W, Xu J-M. Reliability analysis of varietal hypercube networks. J Univ Sci Technol China, 2009, 39(12): 1248-1252
8 Xu J-M. Theory and Application of Graphs. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003
https://doi.org/10.1007/978-1-4419-8698-6
9 Xu J-M. Combinatorial Theory in Networks. Beijing: Science Press, 2013
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed