Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  2015, Vol. 10 Issue (3): 583-594   https://doi.org/10.1007/s11464-015-0422-x
  本期目录
Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds
Feng DU1,Jing MAO2,*()
1. School of Mathematics and Physics Science, Jingchu University of Technology, Jingmen 448000, China
2. Department of Mathematics, Harbin Institute of Technology (Weihai), Weihai 264209, China
 全文: PDF(139 KB)  
Abstract

For a compact Riemannian manifold M immersed into a higher dimensional manifold which can be chosen to be a Euclidean space, a unit sphere, or even a projective space, we successfully give several upper bounds in terms of the norm of the mean curvature vector of M for the first non-zero eigenvalue of the p-Laplacian (1<p<+) on M. This result can be seen as an extension of Reilly’s bound for the first non-zero closed eigenvalue of the Laplace operator.

Key wordsp-Laplacian    eigenvalue    mean curvature vector
收稿日期: 2013-11-14      出版日期: 2015-04-01
Corresponding Author(s): Jing MAO   
 引用本文:   
. [J]. Frontiers of Mathematics in China, 2015, 10(3): 583-594.
Feng DU,Jing MAO. Reilly-type inequalities for p-Laplacian on compact Riemannian manifolds. Front. Math. China, 2015, 10(3): 583-594.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-015-0422-x
https://academic.hep.com.cn/fmc/CN/Y2015/V10/I3/583
1 Cao L F, Li H Z. r-Minimal submanifolds in space forms. Ann Global Anal Geom, 2007, 32: 311-341
https://doi.org/10.1007/s10455-007-9064-x
2 Chavel I. Eigenvalues in Riemannian Geometry. New York: Academic Press, 1984
3 Chen B Y. Total Mean Curvature and Submanifolds of Finite Type. Singapore: World Scientific, 1984
https://doi.org/10.1142/0065
4 Chen D G, Cheng Q M. Extrinsic estimates for eigenvalues of the Laplace operator. J Math Soc Japan, 2008, 60: 325-339
https://doi.org/10.2969/jmsj/06020325
5 Chen D G, Li H Z. The sharp estimates for the first eigenvalue of Paneitz operator in 4-manifold. arXiv: 1010.3102v1
6 Grosjean J F. Upper bounds for the first eigenvalue of the Laplacian on compact submanifolds. Pacific J Math, 2002, 206: 93-112
https://doi.org/10.2140/pjm.2002.206.93
7 Mao J. Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel. J Math Pures Appl, 2014, 101(3): 372-393
https://doi.org/10.1016/j.matpur.2013.06.006
8 Reilly R. On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space. Comm Math Helv, 1977, 52: 525-533
https://doi.org/10.1007/BF02567385
9 El Soufi A, Harrell ll E M, Ilias S. Universal inequalities for the eigenvalues of Laplace and Schr?dinger operators on submanifolds. Trans Amer Math Soc, 2009, 361: 2337-2350
https://doi.org/10.1090/S0002-9947-08-04780-6
10 Veron L. Some existence and uniqueness results for solution of some quasilinear elliptic equations on compact Riemannian manifolds. Colloquia Mathematica Societatis Janos Bolyai, Vol 62, P D E. Budapest, 1991, 317-352
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed