Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  2016, Vol. 11 Issue (6): 1363-1378   https://doi.org/10.1007/s11464-016-0535-x
  本期目录
Generalized T3-plot for testing high-dimensional normality
Mingyao AI1,*(),Jiajuan LIANG2,Man-Lai TANG3
1. LMAM, School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing 100871, China
2. Department of Marketing, College of Business, University of New Haven, West Haven, CT 06516, USA
3. Department of Mathematics and Statistics, School of Business, Hang Seng Management College, Hong Kong, China
 全文: PDF(578 KB)  
Abstract

A new dimension-reduction graphical method for testing highdimensional normality is developed by using the theory of spherical distributions and the idea of principal component analysis. The dimension reduction is realized by projecting high-dimensional data onto some selected eigenvector directions. The asymptotic statistical independence of the plotting functions on the selected eigenvector directions provides the principle for the new plot. A departure from multivariate normality of the raw data could be captured by at least one plot on the selected eigenvector direction. Acceptance regions associated with the plots are provided to enhance interpretability of the plots. Monte Carlo studies and an illustrative example show that the proposed graphical method has competitive power performance and improves the existing graphical method significantly in testing high-dimensional normality.

Key wordsDimension reduction    graphical method    high-dimensional data    multivariate normality    spherical distribution
收稿日期: 2014-10-21      出版日期: 2016-10-18
Corresponding Author(s): Mingyao AI   
 引用本文:   
. [J]. Frontiers of Mathematics in China, 2016, 11(6): 1363-1378.
Mingyao AI,Jiajuan LIANG,Man-Lai TANG. Generalized T3-plot for testing high-dimensional normality. Front. Math. China, 2016, 11(6): 1363-1378.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-016-0535-x
https://academic.hep.com.cn/fmc/CN/Y2016/V11/I6/1363
1 Ahn S K. F-probability plot and its application to multivariate normality. Comm Statist Theory Methods, 1992, 21: 997–1023
https://doi.org/10.1080/03610929208830828
2 Chambers J M, Cleveland W S, Kleiner B, Tukey P. Graphical Methods for Data Analysis. Pacific Grove: Wadsworth and Brooks/Cole, 1983
3 Cleveland W S. The Elements of Graphing Data. Monterey: Wadsworth and Brooks/Cole, 1985
4 Cleveland W S. Visualizing Data. Murray Hill: AT & T Bell Lab, 1993
5 Easton G S, McCulloch R E. A multivariate generalization of quantile-quantile plot. J Amer Statist Assoc, 1990, 85: 376–386
https://doi.org/10.1080/01621459.1990.10476210
6 Fang K-T, Kotz S, Ng K W. Symmetric Multivariate and Related Distributions. London: Chapman and Hall, 1990
https://doi.org/10.1007/978-1-4899-2937-2
7 Fang K-T, Li R, Liang J. A multivariate version of Ghosh’s T3-plot to detect nonmultinormality. Comput Statist Data Anal, 1998, 28: 371–386
https://doi.org/10.1016/S0167-9473(98)90147-5
8 Ghosh S. A new graphical tool to detect non-normality. J Roy Statist Soc (B), 1996, 59: 691–702
9 Gibbons M R, Ross S A, Shanken J. A test of the efficiency of a given portfolio. Econometrica, 1989, 57: 1121–1152
https://doi.org/10.2307/1913625
10 Goodman C R, Kotz S. Multivariate β-generalized normal distributions. J Multivariate Anal, 1973, 3: 204–219
https://doi.org/10.1016/0047-259X(73)90023-7
11 Jolliffe I T. Principal Component Analysis. New York: Springer-Verlag, 1986
https://doi.org/10.1007/978-1-4757-1904-8
12 Liang J, Bentler P M. A t-distribution plot to detect non-multinormality. Comput Statist Data Anal, 1999, 30: 31–44
https://doi.org/10.1016/S0167-9473(98)00085-1
13 Liang J, Li R, Fang H, Fang K-T. Testing multinormality based on low-dimensional projection. J Statist Plann Inference, 2000, 86: 129–141
https://doi.org/10.1016/S0378-3758(99)00168-8
14 Liang J, Pan W, Yang Z H. Characterization-based Q-Q plots for testing multinormality. Statist Probab Lett, 2004, 70: 183–190
https://doi.org/10.1016/j.spl.2004.10.002
15 Liang J, Tang M-L. Generalized F-tests for the multivariate normal mean. Comput Statist Data Anal, 2009, 53: 1177–1190
https://doi.org/10.1016/j.csda.2008.10.023
16 MacKinlay A C. On multivariate tests of the CAPM. J Finan Econ, 1987, 18: 341–371
https://doi.org/10.1016/0304-405X(87)90044-4
17 Mardia K V. Tests of univariate and multivariate normality. In: Krishnaiah P R, ed. Handbook of Statistics, Vol 1. Dordrecht: North-Holland Publishing Company, 1980, 279–320
18 Small N J H. Plotting squared radii. Biometrika, 1978, 65: 657–658
https://doi.org/10.1093/biomet/65.3.657
19 Yang Z-H, Fang K-T, Liang J. A characterization of multivariate normal distribution and its application. Statist Probab Lett, 1996, 30: 347–352
https://doi.org/10.1016/S0167-7152(95)00238-3
20 Zhou G. Small sample tests of portfolio efficiency. J Finan Econ, 1991, 30: 165–191
https://doi.org/10.1016/0304-405X(91)90041-H
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed