Please wait a minute...
Frontiers of Mathematics in China

ISSN 1673-3452

ISSN 1673-3576(Online)

CN 11-5739/O1

邮发代号 80-964

2019 Impact Factor: 1.03

Frontiers of Mathematics in China  2018, Vol. 13 Issue (5): 1215-1243   https://doi.org/10.1007/s11464-018-0722-z
  本期目录
Criteria on ergodicity and strong ergodicity of single death processes
Yuhui ZHANG()
School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, China
 全文: PDF(240 KB)  
Abstract

Based on an explicit representation of moments of hitting times for single death processes, the criteria on ergodicity and strong ergodicity are obtained. These results can be applied for an extended class of branching processes. Meanwhile, some sufficient and necessary conditions for recurrence and exponential ergodicity as well as extinction probability for the processes are presented.

Key wordsSingle death process    ergodicity    strong ergodicity    recurrence    moments of hitting times
收稿日期: 2018-06-29      出版日期: 2018-10-29
Corresponding Author(s): Yuhui ZHANG   
 引用本文:   
. [J]. Frontiers of Mathematics in China, 2018, 13(5): 1215-1243.
Yuhui ZHANG. Criteria on ergodicity and strong ergodicity of single death processes. Front. Math. China, 2018, 13(5): 1215-1243.
 链接本文:  
https://academic.hep.com.cn/fmc/CN/10.1007/s11464-018-0722-z
https://academic.hep.com.cn/fmc/CN/Y2018/V13/I5/1215
1 Chen A Y, Pollett P, Zhang H J, Cairns B. Uniqueness criteria for continuous-time Markov chains with general transition structure. Adv Appl Probab, 2005, 37(4): 1056–1074
https://doi.org/10.1017/S0001867800000665
2 Chen M F. Single birth processes. Chin Ann Math Ser B, 1999, 20: 77–82
https://doi.org/10.1142/S0252959999000114
3 Chen M F. Explicit bounds of the first eigenvalue. Sci China Ser A, 2000, 43(10): 1051–1059
https://doi.org/10.1007/BF02898239
4 Chen M F. Explicit criteria for several types of ergodicity. Chinese J Appl Probab Statist, 2001, 17(2): 1–8
5 Chen M F. From Markov Chains to Non-Equilibrium Particle Systems. 2nd ed. Singapore: World Scientific, 2004
https://doi.org/10.1142/5513
6 Chen M F, Zhang Y H. Unified representation of formulas for single birth processes. Front Math China, 2014, 9(4): 761–796
https://doi.org/10.1007/s11464-014-0381-7
7 Chen R R. An extended class of time-continuous branching processes. J Appl Probab, 1997, 34(1): 14–23
https://doi.org/10.2307/3215170
8 Hou Z T, Guo Q F. Homogeneous Denumerable Markov Processes. Beijing: Science Press, 1978 (in Chinese); English translation, Beijing: Science Press and Springer, 1988
9 Isaacson D, Arnold B. Strong ergodicity for continuous-time Markov chains. J Appl Probab, 1978, 15, 699–706
https://doi.org/10.2307/3213427
10 Mao Y H. Ergodic degrees for continuous-time Markov chains. Sci China Math, 2004, 47(2): 161–174
https://doi.org/10.1360/02ys0306
11 Mao Y H, Zhang Y H. Exponential ergodicity for single-birth processes. J Appl Probab, 2004, 41: 1022–1032
https://doi.org/10.1239/jap/1101840548
12 Martínez S, Martín J S, Villemonais D. Existence and uniqueness of a quasi-stationary distribution for Markov processes with fast return from infinity. J Appl Probab, 2014, 51(3): 756–768
https://doi.org/10.1239/jap/1409932672
13 Wang L D, Zhang Y H. Criteria for zero-exit (-entrance) of single-birth (-death) Q-matrices. Acta Math Sinica (Chin Ser), 2014, 57(4): 681–692 (in Chinese)
14 Wang Z K, Yang X Q. Birth and Death Processes and Markov Chains. Science Press: Beijing, 1992
15 Yan S J, Chen M F. Multidimensional Q-processes. Chin Ann Math Ser B, 1986, 7: 90–110
16 Yan Y Y, Zhang Y H. Probabilistic meanings for some numerical characteristics of single death processes. J Beijing Normal Univ (Natur Sci), 2018 (to appear) (in Chinese)
17 Zhang J K. On the generalized birth and death processes (I). Acta Math Sci, 1984, 4: 241–259
18 Zhang Y H. Strong ergodicity for single-birth processes. J Appl Probab, 2001, 38(1): 270–277
https://doi.org/10.1017/S0021900200018696
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed