The aim of this study was to explore the regulatory mechanism of retinoic acid (RA) on the TBX1 gene expression in myocardial cells. Ventricular cardiocytes were isolated from neonatal rats and cultured, and then treated with different concentrations of retinoic acid. The expression of Shh and Fgf8 at mRNA and protein levels in neonatal rat myocardial cells were measured by using RT-PCR and Western blot technique, respectively. There was basal expression of Shh and Fgf8 in the control group. When treated with 3×10-7 mol/L RA, we observed that the expression of Shh mRNA and protein in neonatal rat myocardial cells were up-regulated by 1.51 (P<0.05) and 1.10 times (P<0.05), respectively. In comparison with the control group, under the concentration of 5×10-7 mol/L RA, they were up-regulated by 2.21 (P<0.05) and 2.38 times (P<0.05) individually. Meanwhile, we could detect that the expression of Fgf8 mRNA and protein were up-regulated by 2.50 times (P<0.05) and 80% (P<0.05) separately compared with the control group after stimulation of 3×10-7 mol/L RA, and they were up-regulated by 3.48 (P<0.05) and 2.04 times (P<0.05) individually after stimulation of 5×10-7 mol/L RA. The results indicated that RA could induce the expression of Shh and Fgf8 in neonatal rat myocardial cells. At the same time, it has shown that Shh and Fgf8 were involved in the regulation process of RA on TBX1 expression.
Corresponding Author(s):
JIN Runming,Email:jinrunm@public.wh.hb.cn
引用本文:
. Influence of retinoic acid on TBX1 expression in myocardial cells induced by Shh and Fgf8[J]. Frontiers of Medicine in China, 2009, 3(1): 61-66.
Miao LIU, Xiaoyan WU, Jiawei XU, Runming JIN. Influence of retinoic acid on TBX1 expression in myocardial cells induced by Shh and Fgf8. Front Med Chin, 2009, 3(1): 61-66.
Ben-Shachar S, Ou Z, Shaw C A, Belmont J W, Patel M S, Hummel M, Amato S, Tartaglia N, Berg J, Sutton V R, Lalani S R, Chinault A C, Cheung S W, Lupski J R, Patel A. 22q11.2 distal deletion: a recurrent genomic disorder distinct from DiGeorge syndrome and velocardiofacial syndrome. Am J Hum Genet , 2008, 82(1): 214–221 doi: 10.1016/j.ajhg.2007.09.014
2
Arnold J S, Braunstein E M, Ohyama T, Groves A K, Adams J C, Brown M C, Morrow B E. Tissue-specific roles of TBX1 in the development of the outer, middle and inner ear, defective in 22q11DS patients. Hum Mol Genet , 2006, 15(10): 1629–1639 doi: 10.1093/hmg/ddl084
3
Vermot J, Messaddeq N, Niederreither K, Dierich A, Dolle P. Rescue of morphogenetic defects and of retinoic acid signaling in retinaldehyde dehydrogenase 2 (Raldh2) mouse mutants by chimerism with wild-type cells. Differentiation , 2006, 74(9): 661–668 doi: 10.1111/j.1432-0436.2006.00094.x
4
Roberts C, Ivins S, Cook A C, Baldini A, Scambler P J. Cyp26 genes a1, b1 and c1 are down-regulated in TBX1 null mice and inhibition of Cyp26 enzyme function produces a phenocopy of DiGeorge Syndrome in the chick. Hum Mol Genet , 2006, 15(23): 3394–3410 doi: 10.1093/hmg/ddl416
5
Metzqer D, Chambon P. Contribution of targeted conditional somatic mutagenesis to deciphering retinoid X receptor functions and to generating mouse models of human diseases. Handb Exp Pharmacol , 2007, 178(2): 511–524 doi: 10.1007/978-3-540-35109-2_21
6
Arnold J S, Werling U, Braunstein E M, Liao J, Nowotschin S, Edelmann W, Hebert J M, Morrow B E. Inactivation of TBX1 in the pharyngeal endoderm results in 22q11DS malformations. Development , 2006, 133(5): 977–987 doi: 10.1242/dev.02264
7
Xu H, Morishima M, Wylie J N, Schwartz R J, Bruneau B G, Lindsay E A, Baldini A. TBX1 has a dual role in the morphogenesis of the cardiac outflow tract. Development , 2004, 131(13): 3217–3227 doi: 10.1242/dev.01174
8
Zhang Z, Huvnh T, Baldini A. Mesodermal expression of TBX1 is necessary and sufficient for pharyngeal arch and cardiac outflow tract development. Development , 2006, 133(18): 3587–3595 doi: 10.1242/dev.02539
9
Aggarwal V S, Liao J, Bondarev A, Schimmang T, Lewandoski M, Locker J, Shanke A, Campione M, Morrow B E. Dissection of TBX1 and Fgf interactions in mouse models of 22q11DS suggests functional redundancy. Hum Mol Genet , 2006, 15(21): 3219–3228 doi: 10.1093/hmg/ddl399
10
Zhang L, Zhong T, Wang Y, Jiang Q, Song H, Gui Y. TBX1, a DiGeorge syndrome candidate gene, is inhibited by retinoic acid. Int J Dev Biol , 2006, 50(1): 55–61 doi: 10.1387/ijdb.052036lz
11
Yamagishi H, Maeda J, Hu T, Mcanally J, Conway S J, Kume T, Meyers E N, Yamagishi C, Srivastava D. TBX1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev , 2003, 17(2): 269–281 doi: 10.1101/gad.1048903
12
Ivins S, Lammerts van Beuren K, Roberts C, James C, Lindsay E, Baldini A, Ataliotis P, Scambler P J. Microarray analysis detects differentially expressed genes in the pharyngeal region of mice lacking TBX1. Dev Biol , 2005, 285(2): 554–569 doi: 10.1016/j.ydbio.2005.06.026
13
Moon A M, Guris D L, Seo J H, Li L, Hammond J, Talbot A, Imamoto A. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes. Dev Cell , 2006, 10(1): 71–80 doi: 10.1016/j.devcel.2005.12.003
15
Zhang Z, Cerrato F, Xu H, Vitelli F, Morishima M, Vincentz J, Furuta Y, Ma L, Martin J F, Baldini A, Lindsay E. TBX1 expression in pharyngeal epithelia is necessary for pharyngeal arch artery development. Development , 2005, 132(23): 5307–5315 doi: 10.1242/dev.02086
16
Vitelli F, Taddei I, Morishima M, Meyers E N, Lindsay E A, Baldini A. A genetic link between TBX1 and fibroblast growth factor signaling. Development , 2002, 129(19): 4605–4611
17
Brown C B, Wenning J M, Lu M M, Epstein D J, Meyers E N, Epstein J A. Cre-mediated excision of Fgf8 in the TBX1 expression domain reveals a critical role for Fgf8 in cardiovascular development in the mouse. Dev Biol , 2004, 267(1): 190–202 doi: 10.1016/j.ydbio.2003.10.024
18
Roberts C, Ivins S M, James C T, Scambler P J. Retinoic acid down-regulates TBX1 expression in vivo and in vitro. Dev Dyn , 2005, 232(4): 928–938 doi: 10.1002/dvdy.20268
19
Duester G. Retinoic acid regulation of the somitogenesis clock. Birth Defects Res C Embryo Today , 2007, 81(2): 84–92 doi: 10.1002/bdrc.20092
20
Wahl M B, Deng C, Lewandoski M, Pourquie O. Fgf signaling acts upstream of the NOTCH and WNT signaling pathways to control segmentation clock oscillations in mouse somitogenesis. Development , 2007, 134(22): 4033–4041 doi: 10.1242/dev.009167