Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Front. Med.  2010, Vol. 4 Issue (2): 241-246   https://doi.org/10.1007/s11684-010-0032-7
  Research articles 本期目录
Development of a magnetite-gene complex for gene transfection
Development of a magnetite-gene complex for gene transfection
Jian XIN BM1,Ze-Feng XIA MD1,Kai-Xiong TAO MD1,Kai-Lin CAI PhD1,Gao-Xiong HAN MD1,Xiao-Ming SHUAI MD1,Ji-Liang WANG MD1,Han-Song DU MD1,Guo-Bin WANG PhD1,Yan LUO MM2,
1.Department of Laparoscopic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; 2.Department of Ophthalmology, Wuhan No. 1 Hospital, Wuhan 430022, China;
 全文: PDF(250 KB)  
Abstract:The key to successful gene therapy is to find a suitable method and carrier for transfection to allow a gene to be transferred into a cell and integrated into the target gene. The aim of this study was to determine whether biomagnetic material could be combined with the nucleic acid for gene transfection. Dextran-coated iron oxide nanoparticles (DCIONPs) were prepared and mixed with the plasmid pGenesil-1 containing the test gene, which expresses enhanced green fluorescent protein (eGFP). PGenesil-1 empty vector was used as a control. The binding ability was assessed by electrophoresis of the DNA on agarose gels and quantification using BANDSCAN software. Using different gene carriers, Lipofectamine 2000, Sofast, and DCIONPs, the large intestine cancer (Lovo) cell line was transfected in vitro with or without a magnetic field. The expression of eGFP was observed by fluorescence microscopy, and the transfection efficiency was compared. The results showed there was a rapid increase in combining rate when the quality ratio of DCIONPs and pGenesil-1 ascended from 1∶1 to 5∶1. However, the combining rate increased less rapidly as the quality ratio continued ascending. The expression of eGFP showed that the early transfection rate could be improved by applying a magnetic field. In conclusion, the DCIONPs we synthesized are able to carry plasmid DNA and enhance the early transfection efficiency when using a magnetic field.
Key wordsnanoparticle    magnetite    gene therapy    magnetofection
出版日期: 2010-06-05
 引用本文:   
. Development of a magnetite-gene complex for gene transfection[J]. Front. Med., 2010, 4(2): 241-246.
Jian XIN BM, Ze-Feng XIA MD, Kai-Xiong TAO MD, Kai-Lin CAI PhD, Gao-Xiong HAN MD, Xiao-Ming SHUAI MD, Ji-Liang WANG MD, Han-Song DU MD, Guo-Bin WANG PhD, Yan LUO MM, . Development of a magnetite-gene complex for gene transfection. Front. Med., 2010, 4(2): 241-246.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-010-0032-7
https://academic.hep.com.cn/fmd/CN/Y2010/V4/I2/241
Williams D A. Gene therapy continues tomature and to face challenges. Mol Ther, 2009, 17(8): 1305–1306

doi: 10.1038/mt.2009.162
Khalil I A, Kogure K, Futaki S, Hama S, Akita H, Ueno M, Kishida H, Kudoh M, Mishina Y, Kataoka K, Yamada M, Harashima H. Octaarginine-modified multifunctional envelope-type nanoparticlesfor gene delivery. Gene Ther, 2007, 14(8): 682–689

doi: 10.1038/sj.gt.3302910
Gopenath P, Gogoi S K, Chattopadhyay A, Ghosh S S. Implication of silver nanoparticle induced cell apoptosisfor in vitro gene therapy. Nanotechnology, 2008, 19(7): 1–10
Goetze T, Gansau C, Buske N, Roeder M, Gornert P, Bahr M. Biocompatible magnetic core/shellnanoparticles. J Magn Magn Mater, 2002, 252 (1―3): 399–402

doi: 10.1016/S0304-8853(02)00624-8
Wang G B, Xia Z F, Tao K X, Zhou L G, Liu J W, Xiao Y, Li J X. Experimental study on acute toxicology of Fe3O4 nano-magnetic ferrifluid. Huazhong Ke Ji Da Xue Xue Bao (Yi Xue Ban), 2004, 33(4): 452–454 (in Chinese)
Lubbe A S, Alexiou C, Bergemann C. Clinical applications ofmagnetic drug targeting. J Surg Res, 2001, 95(2): 200–206

doi: 10.1006/jsre.2000.6030
Tao K X, Chen D D, Wang G B, Bai Z J, Lu X M, Tian Y, Wu Z D, Hu F X, Niu X. Experimental study and clinical application of magnetic adriamycin-protein microspherestargeting therapy on gastric cancer. Zhonghua Wai Ke Za Zhi, 1999, 37(4): 205–207 (in Chinese)
Krotz F, de Wit C, Sohn H Y, Zahler S, Gloe T, Pohl U, Plank C. Magnetofection–ahighly efficient tool for antisense oligonucleotide delivery in vitroand in vivo. Mol Ther, 2003, 7(5 Pt 1): 700–710

doi: 10.1016/S1525-0016(03)00065-0
Xia Z F, Wang G B, Tao K X, Li J X. Preparation of magnetite-dextran microspheres by ultrasonication. J Magn Magn Mater, 2005, 293(1): 182–186

doi: 10.1016/j.jmmm.2005.01.059
Telang W, Ertl H C J. Immune barriers to successful gene therapy. Trends Mol Med, 2009, 15(1): 32–39

doi: 10.1016/j.molmed.2008.11.005
Knowles M R, Hohneker K W, Zhou Z, Olsen J C, Noah T L, Hu P C, Leigh M W, Engelhardt J F, Edwards L J, Jones K R, Grossman M, Wilson J M, Johnson L G, Boucher R C. A controlled study of adenoviral-vector-mediated genetransfer in the nasal epithelium of patients with cystic fibrosis. N Engl J Med, 1995, 333(13): 823–831

doi: 10.1056/NEJM199509283331302
Takahashi Y, Nishikawa M, Takakura Y. Nonviral vector-mediatedRNA interference: its gene silencing characteristics and importantfactors to achieve RNAi-based gene therapy. Adv Drug Deliv Rev, 2009, 61(9): 760–766

doi: 10.1016/j.addr.2009.04.006
Lubbe A S, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dorken B, Herrmann F, Gurtler R, Hohenberger P, Haas N, Sohr R, Sander B, Lemke A J, Ohlendorf D, Huhnt W, Huhn D. Clinical experiences with magnetic drugtargeting: a phase I study with 4'-epidoxorubicin in 14 patients withadvanced solid tumors. Cancer Res, 1996, 56(20): 4686–4693
Wagner S, Schnorr J, Pilgrimm H, Hamm B, Tarpitz M. Monomer-coated very small superparamagnetic iron oxide particles as contrast mediumfor magnetic resonance imaging: preclinical in vivo characterization. Invest Radiol, 2002, 37(4): 167–177

doi: 10.1097/00004424-200204000-00002
Scherer F, Anton M, Schillinger U, Henke J, Bergemann C, Kruger A, Gansbacher B, Plank C. Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro andin vivo. Gene Ther, 2002, 9(2): 102–109

doi: 10.1038/sj.gt.3301624
Xiang J J, Zhu S G, Lv H B, Ruan J M, Zhang B C, Li J, Li G Y. Use of magnetic iron oxide nanoparticles as gene carrier. Ai Zheng, 2001, 20(10): 1009–1014 (in Chinese)
Bergemann C, Muller-Schulte D, Oster J, a Brassard L, Lubbe A S. Magnetic ion-exchange nano- and microparticles for medical, biomedical andmolecular biological applications. J Magn Magn Mater, 1999, 194: 45–52

doi: 10.1016/S0304-8853(98)00554-X
Plank C, Schillinger U, Scherer F, Bergemann C, Remy J S, Krotz F, Anton M, Lausier J, Rosenecker J. The magnetofection method: using magnetic force to enhancegene delivery. Biol Chem, 2003, 384(5): 737–747

doi: 10.1515/BC.2003.082
Mykhaylyk O, Zelphati O, Hammerschmid E, Anton M, Rosenecker J, Plank C. Recent advances in magnetofectionand its potential to deliver siRNAs in vitro. Methods Mol Biol, 2009, 487: 111–146
Mair L, Ford K, Alam M R, Kole R, Fisher M, Superfine R. Size-uniform 200nm particles: fabrication and applicationto magnetofection. J Biomed Nanotechnol, 2009, 5(2): 182–191

doi: 10.1166/jbn.2009.1024
Huttinger C, Hirschberger J, Jahnke A, Kostlin R, Brill T, Plank C, Kuchenhoff H, Krieger S, Schillinger U. Neoadjuvant gene delivery of feline granulocyte-macrophagecolony-stimulating factor using magnetofection for the treatment offeline fibrosarcomas: a phase I trial. J Gene Medi, 2008, 10(6): 655–667

doi: 10.1002/jgm.1185
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed