Stem cell niches and endogenous electric fields in tissue repair
Stem cell niches and endogenous electric fields in tissue repair
Li LI, Jianxin JIANG()
State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China
Adult stem cells are responsible for homeostasis and repair of many tissues. Endogenous adult stem cells reside in certain regions of organs, known as the stem cell niche, which is recognized to have an important role in regulating tissue maintenance and repair. In wound healing and tissue repair, stem cells are mobilized and recruited to the site of wound, and participate in the repair process. Many regulatory factors are involved in the stem cell-based repair process, including stem cell niches and endogenous wound electric fields, which are present at wound tissues and proved to be important in guiding wound healing. Here we briefly review the role of stem cell niches and endogenous electric fields in tissue repair, and hypothesize that endogenous electric fields become part of stem cell niche in the wound site.
. Stem cell niches and endogenous electric fields in tissue repair[J]. Frontiers of Medicine, 2011, 5(1): 40-44.
Li LI, Jianxin JIANG. Stem cell niches and endogenous electric fields in tissue repair. Front Med, 2011, 5(1): 40-44.
Doetsch F. A niche for adult neural stem cells. Curr Opin Genet Dev , 2003, 13(5): 543–550 doi: 10.1016/j.gde.2003.08.012 pmid:14550422
2
Nuccitelli R. A role for endogenous electric fields in wound healing. Curr Top Dev Biol , 2003, 58: 1–26 doi: 10.1016/S0070-2153(03)58001-2 pmid:14711011
3
Zhao M, Song B, Pu J, Wada T, Reid B, Tai G, Wang F, Guo A, Walczysko P, Gu Y, Sasaki T, Suzuki A, Forrester J V, Bourne H R, Devreotes P N, McCaig C D, Penninger J M. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-gamma and PTEN. Nature , 2006, 442(7101): 457–460 doi: 10.1038/nature04925 pmid:16871217
4
Scadden D T. The stem-cell niche as an entity of action. Nature , 2006, 441(7097): 1075–1079 doi: 10.1038/nature04957 pmid:16810242
5
Jones D L, Wagers A J. No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol , 2008, 9(1): 11–21 doi: 10.1038/nrm2319 pmid:18097443
6
Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell , 2004, 116(6): 769–778 doi: 10.1016/S0092-8674(04)00255-7 pmid:15035980
7
Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells , 1978, 4(1-2): 7–25 pmid:747780
8
Nie D. Cancer stem cell and niche. Front Biosci (Schol Ed) , 2010, 2(1): 184–193 (Schol Ed) doi: 10.2741/s56 pmid:20036939
9
King F J, Lin H. Somatic signaling mediated by fs(1)Yb is essential for germline stem cell maintenance during Drosophila oogenesis. Development , 1999, 126(9): 1833–1844 pmid:10101118
10
Xie T, Spradling A C. A niche maintaining germ line stem cells in the Drosophila ovary. Science , 2000, 290(5490): 328–330 doi: 10.1126/science.290.5490.328 pmid:11030649
11
Tumbar T, Guasch G, Greco V, Blanpain C, Lowry W E, Rendl M, Fuchs E. Defining the epithelial stem cell niche in skin. Science , 2004, 303(5656): 359–363 doi: 10.1126/science.1092436 pmid:14671312
12
Yen T H, Wright N A. The gastrointestinal tract stem cell niche. Stem Cell Rev , 2006, 2(3): 203–212 doi: 10.1007/s12015-006-0048-1 pmid:17625256
13
Conover J C, Notti R Q. The neural stem cell niche. Cell Tissue Res , 2008, 331(1): 211–224 doi: 10.1007/s00441-007-0503-6 pmid:17922142
14
Mitsiadis T A, Barrandon O, Rochat A, Barrandon Y, De Bari C. Stem cell niches in mammals. Exp Cell Res , 2007, 313(16): 3377–3385 doi: 10.1016/j.yexcr.2007.07.027 pmid:17764674
15
Ohshima H, Nakasone N, Hashimoto E, Sakai H, Nakakura-Ohshima K, Harada H. The eternal tooth germ is formed at the apical end of continuously growing teeth. Arch Oral Biol , 2005, 50(2): 153–157 doi: 10.1016/j.archoralbio.2004.09.008 pmid:15721143
16
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol , 2006, 6(2): 93–106 doi: 10.1038/nri1779 pmid:16491134
17
Mohyeldin A, Garzón-Muvdi T, Qui?ones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell , 2010, 7(2): 150–161 doi: 10.1016/j.stem.2010.07.007 pmid:20682444
18
Moore K A, Lemischka I R. Stem cells and their niches. Science , 2006, 311(5769): 1880–1885 doi: 10.1126/science.1110542 pmid:16574858
19
Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci USA , 2003, 100(90001 Suppl 1): 11830–11835 doi: 10.1073/pnas.1734203100 pmid:12913119
20
Morris R J, Liu Y, Marles L, Yang Z, Trempus C, Li S, Lin J S, Sawicki J A, Cotsarelis G. Capturing and profiling adult hair follicle stem cells. Nat Biotechnol , 2004, 22(4): 411–417 doi: 10.1038/nbt950 pmid:15024388
21
Morris R J, Potten C S. Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif , 1994, 27(5): 279–289 doi: 10.1111/j.1365-2184.1994.tb01425.x pmid:10465012
22
Cotsarelis G, Sun T T, Lavker R M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell , 1990, 61(7): 1329–1337 doi: 10.1016/0092-8674(90)90696-C pmid:2364430
23
Luo J, Daniels S B, Lennington J B, Notti R Q, Conover J C. The aging neurogenic subventricular zone. Aging Cell , 2006, 5(2): 139–152 doi: 10.1111/j.1474-9726.2006.00197.x pmid:16626393
24
Luskin M B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron , 1993, 11(1): 173–189 doi: 10.1016/0896-6273(93)90281-U pmid:8338665
25
Menn B, Garcia-Verdugo J M, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A. Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci , 2006, 26(30): 7907–7918 doi: 10.1523/JNEUROSCI.1299-06.2006 pmid:16870736
26
Seri B, García-Verdugo J M, Collado-Morente L, McEwen B S, Alvarez-Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol , 2004, 478(4): 359–378 15384070 doi: 10.1002/cne.20288
27
Park H C, Yasuda K, Kuo M C, Ni J, Ratliff B B, Chander P N, Goligorsky M S. Renal capsule as a stem cell niche. Am J Physiol Renal Physiol , 2010, 67(5): 1254–1262 doi: 10.1152/ajprenal.00406.2009 pmid:20200095
28
Kim K, Lee K M, Han D J, Yu E, Cho Y M. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol , 2008, 1(3): 232–241 pmid:18784815
29
Bearzi C, Rota M, Hosoda T, Tillmanns J, Nascimbene A, De Angelis A, Yasuzawa-Amano S, Trofimova I, Siggins R W, Lecapitaine N, Cascapera S, Beltrami A P, D’Alessandro D A, Zias E, Quaini F, Urbanek K, Michler R E, Bolli R, Kajstura J, Leri A, Anversa P. Human cardiac stem cells. Proc Natl Acad Sci USA , 2007, 104(35): 14068–14073 doi: 10.1073/pnas.0706760104 pmid:17709737
30
Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A. Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA , 2006, 103(24): 9226–9231 doi: 10.1073/pnas.0600635103 pmid:16754876
31
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L. Identification of the haematopoietic stem cell niche and control of the niche size. Nature , 2003, 425(6960): 836–841 doi: 10.1038/nature02041 pmid:14574412
32
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell , 2004, 118(2): 149–161 doi: 10.1016/j.cell.2004.07.004 pmid:15260986
33
Kiel M J, Yilmaz O H, Iwashita T, Yilmaz O H, Terhorst C, Morrison S J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell , 2005, 121(7): 1109–1121 doi: 10.1016/j.cell.2005.05.026 pmid:15989959
34
Kopp H G, Avecilla S T, Hooper A T, Rafii S. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda) , 2005, 20(5): 349–356 doi: 10.1152/physiol.00025.2005 pmid:16174874
35
Zhang J, Li L. Stem cell niche: microenvironment and beyond. J Biol Chem , 2008, 283(15): 9499–9503 doi: 10.1074/jbc.R700043200 pmid:18272517
36
Barker A T, Jaffe L F, Vanable J W Jr. The glabrous epidermis of cavies contains a powerful battery. Am J Physiol , 1982, 242(3): R358–R366 pmid:7065232
37
Candia O A. Electrolyte and fluid transport across corneal, conjunctival and lens epithelia. Exp Eye Res , 2004, 78(3): 527–535 doi: 10.1016/j.exer.2003.08.015 pmid:15106931
38
Mukerjee E V, Isseroff R R, Nuccitelli R, Collins S D, Smith R L. Microneedle array for measuring wound generated electric fields. Conf Proc IEEE Eng Med Biol Soc , 2006, 1: 4326–4328 doi: 10.1109/IEMBS.2006.260205 pmid:17947077
39
Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith P J. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen , 2008, 16(3): 432–441 doi: 10.1111/j.1524-475X.2008.00389.x pmid:18471262
40
McCaig C D, Rajnicek A M, Song B, Zhao M. Controlling cell behavior electrically: current views and future potential. Physiol Rev , 2005, 85(3): 943–978 doi: 10.1152/physrev.00020.2004 pmid:15987799
41
Zhao M. Electrical fields in wound healing-An overriding signal that directs cell migration. Semin Cell Dev Biol , 2009, 20(6): 674–682 doi: 10.1016/j.semcdb.2008.12.009 pmid:19146969
42
Song B, Zhao M, Forrester J V, McCaig C D. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc Natl Acad Sci USA , 2002, 99(21): 13577–13582 doi: 10.1073/pnas.202235299 pmid:12368473
43
Arocena M, Zhao M, Collinson J M, Song B. A time-lapse and quantitative modelling analysis of neural stem cell motion in the absence of directional cues and in electric fields. J Neurosci Res , 2010, 88(15): 3267–3274 doi: 10.1002/jnr.22502 pmid:20890991
44
Ariza C A, Fleury A T, Tormos C J, Petruk V, Chawla S, Oh J, Sakaguchi D S, Mallapragada S K. The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev , 2010, 6(4): 585–600 doi: 10.1007/s12015-010-9171-0 pmid:20665129
45
Hammerick K E, Longaker M T, Prinz F B. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun , 2010, 397(1): 12–17 doi: 10.1016/j.bbrc.2010.05.003 pmid:20452327
46
Sun S, Titushkin I, Cho M. Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry , 2006, 69(2): 133–141 doi: 10.1016/j.bioelechem.2005.11.007 pmid:16473050
47
Tandon N, Goh B, Marsano A, Chao P H, Montouri-Sorrentino C, Gimble J, Vunjak-Novakovic G. Alignment and elongation of human adipose-derived stem cells in response to direct-current electrical stimulation. Conf Proc IEEE Eng Med Biol Soc , 2009, 2009(1): 6517–6521 pmid:19964171
48
Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res , 2009, 315(20): 3611–3619 doi: 10.1016/j.yexcr.2009.08.015 pmid:19720058