1. Department of Plastic and Reconstructive Surgery, Shanghai 9th People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China; 2. National Tissue Engineering Center of China, Shanghai 200241, China
Tissue engineering aims to produce a functional tissue replacement to repair defects. Tissue reconstruction is an essential step toward the clinical application of engineered tissues. Significant progress has recently been achieved in this field. In our laboratory, we focus on construction of cartilage, tendon and bone. The purpose of this review was to summarize the advances in the engineering of these three tissues, particularly focusing on tissue regeneration and defect repair in our laboratory. In cartilage engineering, articular cartilage was reconstructed and defects were repaired in animal models. More sophisticated tissues, such as cartilage in the ear and trachea, were reconstructed both in vitro and in vivo with specific shapes and sizes. Engineered tendon was generated in vitro and in vivo in many animal models with tenocytes or dermal fibroblasts in combination with appropriate mechanical loading. Cranial and limb bone defects were also successfully regenerated and repaired in large animals. Based on sophisticated animal studies, several clinical trials of engineered bone have been launched with promising preliminary results, displaying the high potential for clinical application.
Wakitani S, Kimura T, Hirooka A, Ochi T, Yoneda M, Yasui N, Owaki H, Ono K. Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. J Bone Joint Surg Br , 1989, 71(1): 74–80 pmid:2915011
3
van Susante J L, Buma P, Homminga G N, van den Berg W B, Veth R P. Chondrocyte-seeded hydroxyapatite for repair of large articular cartilage defects. A pilot study in the goat. Biomaterials , 1998, 19(24): 2367–2374 doi: 10.1016/S0142-9612(98)00158-6 pmid:9884051
4
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med , 1994, 331(14): 889–895 doi: 10.1056/NEJM199410063311401 pmid:8078550
5
Liu Y, Chen F, Liu W, Cui L, Shang Q, Xia W, Wang J, Cui Y, Yang G, Liu D, Wu J, Xu R, Buonocore S D, Cao Y. Repairing large porcine full-thickness defects of articular cartilage using autologous chondrocyte-engineered cartilage. Tissue Eng , 2002, 8(4): 709–721 doi: 10.1089/107632702760240616 pmid:12202009
6
Zhou G, Liu W, Cui L, Wang X, Liu T, Cao Y. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells. Tissue Eng , 2006, 12(11): 3209–3221 doi: 10.1089/ten.2006.12.3209 pmid:17518635
7
Cao Y, Vacanti J P, Paige K T, Upton J, Vacanti C A. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg , 1997, 100(2): 297–302 doi: 10.1097/00006534-199708000-00001 pmid:9252594
8
Liu Y, Zhang L, Zhou G, Li Q, Liu W, Yu Z, Luo X, Jiang T, Zhang W, Cao Y. In vitro engineering of human ear-shaped cartilage assisted with CAD/CAM technology. Biomaterials , 2010, 31(8): 2176–2183 doi: 10.1016/j.biomaterials.2009.11.080 pmid:20022366
9
Pelttari K, Winter A, Steck E, Goetzke K, Hennig T, Ochs B G, Aigner T, Richter W. Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice. Arthritis Rheum , 2006, 54(10): 3254–3266 doi: 10.1002/art.22136 pmid:17009260
10
Liu K, Zhou G D, Liu W, Zhang W J, Cui L, Liu X, Liu T Y, Cao Y. The dependence of in vivo stable ectopic chondrogenesis by human mesenchymal stem cells on chondrogenic differentiation in vitro. Biomaterials , 2008, 29(14): 2183–2192 doi: 10.1016/j.biomaterials.2008.01.021 pmid:18289667
11
Liu X, Sun H, Yan D, Zhang L, Lv X, Liu T, Zhang W, Liu W, Cao Y, Zhou G. In vivo ectopic chondrogenesis of BMSCs directed by mature chondrocytes. Biomaterials , 2010, 31(36): 9406–9414 doi: 10.1016/j.biomaterials.2010.08.052 pmid:21056466
12
Yang H N, Park J S, Na K, Woo D G, Kwon Y D, Park K H. The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials , 2009, 30(31): 6374–6385 doi: 10.1016/j.biomaterials.2009.07.062 pmid:19682739
13
Vinatier C, Mrugala D, Jorgensen C, Guicheux J, No?l D. Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends Biotechnol , 2009, 27(5): 307–314 doi: 10.1016/j.tibtech.2009.02.005 pmid:19329205
14
Luo X, Zhou G, Liu W, Zhang W J, Cen L, Cui L, Cao Y. In vitro precultivation alleviates post-implantation inflammation and enhances development of tissue-engineered tubular cartilage. Biomed Mater , 2009, 4(2): 025006 doi: 10.1088/1748-6041/4/2/025006 pmid:19258698
15
Macchiarini P, Jungebluth P, Go T, Asnaghi M A, Rees L E, Cogan T A, Dodson A, Martorell J, Bellini S, Parnigotto P P, Dickinson S C, Hollander A P, Mantero S, Conconi M T, Birchall M A. Clinical transplantation of a tissue-engineered airway. Lancet , 2008, 372(9655): 2023–2030 doi: 10.1016/S0140-6736(08)61598-6 pmid:19022496
16
Cao Y, Liu Y, Liu W, Shan Q, Buonocore S D, Cui L. Bridging tendon defects using autologous tenocyte engineered tendon in a hen model. Plast Reconstr Surg , 2002, 110(5): 1280–1289 doi: 10.1097/00006534-200210000-00011 pmid:12360068
17
Wang B, Liu W, Zhang Y, Jiang Y, Zhang W J, Zhou G, Cui L, Cao Y. Engineering of extensor tendon complex by an ex vivo approach. Biomaterials , 2008, 29(20): 2954–2961 doi: 10.1016/j.biomaterials.2008.03.038 pmid:18423583
18
Liu W, Chen B, Deng D, Xu F, Cui L, Cao Y. Repair of tendon defect with dermal fibroblast engineered tendon in a porcine model. Tissue Eng , 2006, 12(4): 775–788 doi: 10.1089/ten.2006.12.775 pmid:16674291
19
Cao D, Liu W, Wei X, Xu F, Cui L, Cao Y. In vitro tendon engineering with avian tenocytes and polyglycolic acids: a preliminary report. Tissue Eng , 2006, 12(5): 1369–1377 doi: 10.1089/ten.2006.12.1369 pmid:16771649
20
Deng D, Liu W, Xu F, Yang Y, Zhou G, Zhang W J, Cui L, Cao Y. Engineering human neo-tendon tissue in vitro with human dermal fibroblasts under static mechanical strain. Biomaterials , 2009, 30(35): 6724–6730 doi: 10.1016/j.biomaterials.2009.08.054 pmid:19782396
21
Muraglia A, Martin I, Cancedda R, Quarto R. A nude mouse model for human bone formation in unloaded conditions. Bone , 1998, 22(5 Suppl): 131S–134S doi: 10.1016/S8756-3282(98)00009-X pmid:9600769
22
Bruder S P, Kurth A A, Shea M, Hayes W C, Jaiswal N, Kadiyala S. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res , 1998, 16(2): 155–162 doi: 10.1002/jor.1100160202 pmid:9621889
23
Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res , 2000, 49(3): 328–337 doi: 10.1002/(SICI)1097-4636(20000305)49:3<328::AID-JBM5>3.0.CO;2-Q pmid:10602065
24
Bruder S P, Kraus K H, Goldberg V M, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am , 1998, 80(7): 985–996 pmid:9698003
25
Arinzeh T L, Peter S J, Archambault M P, van den Bos C, Gordon S, Kraus K, Smith A, Kadiyala S. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am , 2003, 85-A(10): 1927–1935 pmid:14563800
26
Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood , 2005, 105(4): 1815–1822 doi: 10.1182/blood-2004-04-1559 pmid:15494428
27
Kuo Y R, Goto S, Shih H S, Wang F S, Lin C C, Wang C T, Huang E Y, Chen C L, Wei F C, Zheng X X, Lee W P. Mesenchymal stem cells prolong composite tissue allotransplant survival in a swine model. Transplantation , 2009, 87(12): 1769–1777 doi: 10.1097/TP.0b013e3181a664f1 pmid:19543052
28
Zhou H P, Yi D H, Yu S Q, Sun G C, Cui Q, Zhu H L, Liu J C, Zhang J Z, Wu T J. Administration of donor-derived mesenchymal stem cells can prolong the survival of rat cardiac allograft. Transplant Proc , 2006, 38(9): 3046–3051 doi: 10.1016/j.transproceed.2006.10.002 pmid:17112896
29
Le Blanc K, Rasmusson I, Sundberg B, G?therstr?m C, Hassan M, Uzunel M, Ringdén O. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet , 2004, 363(9419): 1439–1441 doi: 10.1016/S0140-6736(04)16104-7 pmid:15121408
30
Cui L, Yin S, Liu W, Li N, Zhang W, Cao Y. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng , 2007, 13(6): 1185–1195 doi: 10.1089/ten.2006.0315 pmid:17518704
31
Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg , 2001, 12(6): 586–593, discussion 594-595 doi: 10.1097/00001665-200111000-00017 pmid:11711828
32
Weng Y, Wang M, Liu W, Hu X, Chai G, Yan Q, Zhu L, Cui L, Cao Y. Repair of experimental alveolar bone defects by tissue-engineered bone. Tissue Eng , 2006, 12(6): 1503–1513 doi: 10.1089/ten.2006.12.1503 pmid:16846347
33
Yuan J, Cui L, Zhang W J, Liu W, Cao Y. Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials , 2007, 28(6): 1005–1013 doi: 10.1016/j.biomaterials.2006.10.015 pmid:17092556
34
Yuan J, Zhang W J, Liu G, Wei M, Qi Z L, Liu W, Cui L, Cao Y L. Repair of canine mandibular bone defects with bone marrow stromal cells and coral. Tissue Eng Part A , 2010, 16(4): 1385–1394 doi: 10.1089/ten.tea.2009.0472 pmid:19925049
35
Zhu L, Liu W, Cui L, Cao Y. Tissue-engineered bone repair of goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng , 2006, 12(3): 423–433 doi: 10.1089/ten.2006.12.423 pmid:16579676
36
Quarto R, Mastrogiacomo M, Cancedda R, Kutepov S M, Mukhachev V, Lavroukov A, Kon E, Marcacci M. Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med , 2001, 344(5): 385–386 doi: 10.1056/NEJM200102013440516 pmid:11195802
37
Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, Mastrogiacomo M, Cancedda R. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng , 2007, 13(5): 947–955 doi: 10.1089/ten.2006.0271 pmid:17484701
38
Vacanti C A, Bonassar L J, Vacanti M P, Shufflebarger J. Replacement of an avulsed phalanx with tissue-engineered bone. N Engl J Med , 2001, 344(20): 1511–1514 doi: 10.1056/NEJM200105173442004 pmid:11357154
39
Chai G, Zhang Y, Liu W, Cui L, Cao Y L. Clinical application of tissue engineered bone repair of human craniomaxillofacial bone defects. Zhonghua Yi Xue Za Zhi , 2003, 83(19): 1676–1681 (Chin Med J) pmid:14642102
40
Zuk P A, Zhu M, Ashjian P, De Ugarte D A, Huang J I, Mizuno H, Alfonso Z C, Fraser J K, Benhaim P, Hedrick M H. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell , 2002, 13(12): 4279–4295 doi: 10.1091/mbc.E02-02-0105 pmid:12475952
41
Cowan C M, Shi Y Y, Aalami O O, Chou Y F, Mari C, Thomas R, Quarto N, Contag C H, Wu B, Longaker M T. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol , 2004, 22(5): 560–567 doi: 10.1038/nbt958 pmid:15077117