Genetic evidence in planar cell polarity signaling pathway in human neural tube defects
Genetic evidence in planar cell polarity signaling pathway in human neural tube defects
Chunquan Cai1, Ouyan Shi2()
1. Department of Surgery, Tianjin Children’s Hospital, Tianjin 300074, China; 2. School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
Neural tube defects (NTDs) are a group of birth anomalies having a profound physical, emotional, and financial effects on families and communities. Their etiology is complex, involving environmental and genetic factors that interact to modulate the incidence and severity of the developing phenotype. The planar cell polarity (PCP) pathway controls the process of convergent extension (CE) during gastrulation and neural tube closure and has been implicated in the pathogenesis of NTDs in animal models and human cohorts. This review summarizes the cumulative results of recent studies on PCP signaling pathway and human NTDs. These results demonstrate that PCP gene alterations contribute to the etiology of human NTDs.
Beaudin AE, Stover PJ. Insights into metabolic mechanisms underlying folate-responsive neural tube defects: a minireview. Birth Defects Res A Clin Mol Teratol 2009; 85(4): 274-284 doi: 10.1002/bdra.20553 pmid:19180567
2
De Marco P, Calevo MG, Moroni A, Merello E, Raso A, Finnell RH, Zhu H, Andreussi L, Cama A, Capra V. Reduced folate carrier polymorphism (80A—>G) and neural tube defects. Eur J Hum Genet 2003; 11(3): 245-252 doi: 10.1038/sj.ejhg.5200946 pmid:12673279
3
O’Leary VB, Pangilinan F, Cox C, Parle-McDermott A, Conley M, Molloy AM, Kirke PN, Mills JL, Brody LC, Scott JM; Members of the Birth Defects Research Group. Reduced folate carrier polymorphisms and neural tube defect risk. Mol Genet Metab 2006; 87(4): 364-369 doi: 10.1016/j.ymgme.2005.09.024 pmid: PMID:16343969
4
De Marco P, Merello E, Calevo MG, Mascelli S, Raso A, Cama A, Capra V. Evaluation of a methylenetetrahydrofolate-dehydrogenase 1958G>A polymorphism for neural tube defect risk. J Hum Genet 2006; 51(2): 98-103 doi: 10.1007/s10038-005-0329-6 pmid:16315005
5
Kibar Z, Capra V, Gros P. Toward understanding the genetic basis of neural tube defects. Clin Genet 2007; 71(4): 295-310 doi: 10.1111/j.1399-0004.2007.00793.x pmid:17470131
6
van der Linden IJ, Afman LA, Heil SG, Blom HJ. Genetic variation in genes of folate metabolism and neural-tube defect risk. Proc Nutr Soc 2006; 65(2): 204-215 doi: 10.1079/PNS2006495 pmid:16672082
7
Bassuk AG, Kibar Z. Genetic basis of neural tube defects. Semin Pediatr Neurol 2009; 16(3): 101-110 doi: 10.1016/j.spen.2009.06.001 pmid:19778707
8
De Marco P, Merello E, Cama A, Kibar Z, Capra V. Human neural tube defects: genetic causes and prevention. Biofactors 2011; 37(4): 261-268 doi: 10.1002/biof.170 pmid:21674647
9
Rufener S, Ibrahim M, Parmar HA. Imaging of congenital spine and spinal cord malformations. Neuroimaging Clin N Am 2011; 21(3): 659-676, viii doi: 10.1016/j.nic.2011.05.011 pmid:21807317
10
Greene ND, Copp AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 2009; 29(4): 303-311 doi: 10.1002/pd.2206 pmid:19206138
Colas JF, Schoenwolf GC. Towards a cellular and molecular understanding of neurulation. Dev Dyn 2001; 221(2): 117-145 doi: 10.1002/dvdy.1144 pmid:11376482
Juriloff DM, Harris MJ, Tom C, MacDonald KB. Normal mouse strains differ in the site of initiation of closure of the cranial neural tube. Teratology 1991; 44(2): 225-233 doi: 10.1002/tera.1420440211 pmid:1925982
15
Van Allen MI, Kalousek DK, Chernoff GF, Juriloff D, Harris M, McGillivray BC, Yong SL, Langlois S, MacLeod PM, Chitayat D, Friedman JM, Wilson RD, McFadden D, Pantzar J, Ritchie S, Hall JG. Evidence for multi-site closure of the neural tube in humans. Am J Med Genet 1993; 47(5): 723-743 doi: 10.1002/ajmg.1320470528 pmid:8267004
16
Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects. Anat Embryol (Berl) 2000; 201(6): 455-466 doi: 10.1007/s004290050332 pmid:10909899
17
O’Rahilly R, Müller F. The two sites of fusion of the neural folds and the two neuropores in the human embryo. Teratology 2002; 65(4): 162-170 doi: 10.1002/tera.10007 pmid:11948562
18
Rossi A, Cama A, Piatelli G, Ravegnani M, Biancheri R, Tortori-Donati P. Spinal dysraphism: MR imaging rationale. J Neuroradiol 2004; 31(1): 3-24 doi: 10.1016/S0150-9861(04)96875-7 pmid:15026728
19
Vieira AR, Castillo Taucher S. Maternal age and neural tube defects: evidence for a greater effect in spina bifida than in anencephaly. Rev Med Chil 2005; 133(1): 62-70 (in Spanish) pmid:15768151
20
Njamnshi AK, Djientcheu VP, Lekoubou A, Guemse M, Obama MT, Mbu R, Takongmo S, Kago I. Neural tube defects are rare among black Americans but not in sub-Saharan black Africans: the case of Yaounde-Cameroon. J Neurol Sci 2008; 270(1-2): 13-17 doi: 10.1016/j.jns.2008.01.010 pmid:18295800
21
Grewal J, Carmichael SL, Song J, Shaw GM. Neural tube defects: an analysis of neighbourhood- and individual-level socio-economic characteristics. Paediatr Perinat Epidemiol 2009; 23(2): 116-124 doi: 10.1111/j.1365-3016.2008.00992.x pmid:19159398
22
Moretti ME, Bar-Oz B, Fried S, Koren G. Maternal hyperthermia and the risk for neural tube defects in offspring: systematic review and meta-analysis. Epidemiology 2005; 16(2): 216-219 doi: 10.1097/01.ede.0000152903.55579.15 pmid:15703536
23
Loeken MR. Current perspectives on the causes of neural tube defects resulting from diabetic pregnancy. Am J Med Genet C Semin Med Genet 2005; 135C(1): 77-87 doi: 10.1002/ajmg.c.30056 pmid:15800853
24
Ray JG, Wyatt PR, Vermeulen MJ, Meier C, Cole DE. Greater maternal weight and the ongoing risk of neural tube defects after folic acid flour fortification. Obstet Gynecol 2005; 105(2): 261-265 doi: 10.1097/01.AOG.0000151988.84346.3e pmid:15684149
25
De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T. Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 2007; 357(2): 135-142 doi: 10.1056/NEJMoa067103 pmid:17625125
26
Cogram P, Hynes A, Dunlevy LPE, Greene NDE, Copp AJ. Specific isoforms of protein kinase C are essential for prevention of folate-resistant neural tube defects by inositol. Hum Mol Genet 2004; 13(1): 7-14 doi: 10.1093/hmg/ddh003 pmid:14613966
27
Gurvich N, Berman MG, Wittner BS, Gentleman RC, Klein PS, Green JB. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 2005; 19(9): 1166-1168 pmid:15901671
28
Menegola E, Di Renzo F, Broccia ML, Prudenziati M, Minucci S, Massa V, Giavini E. Inhibition of histone deacetylase activity on specific embryonic tissues as a new mechanism for teratogenicity. Birth Defects Res B Dev Reprod Toxicol 2005; 74(5): 392-398 doi: 10.1002/bdrb.20053 pmid:16193500
29
Brender JD, Felkner M, Suarez L, Canfield MA, Henry JP. Maternal pesticide exposure and neural tube defects in Mexican Americans. Ann Epidemiol 2010; 20(1): 16-22 doi: 10.1016/j.annepidem.2009.09.011 pmid:20006272
30
Alwan S, Reefhuis J, Rasmussen SA, Olney RS, Friedman JM; National Birth Defects Prevention Study. Use of selective serotonin-reuptake inhibitors in pregnancy and the risk of birth defects. N Engl J Med 2007; 356(26): 2684-2692 doi: 10.1056/NEJMoa066584 pmid:17596602
31
Harris MJ, Juriloff DM. An update to the list of mouse mutants with neural tube closure defects and advances toward a complete genetic perspective of neural tube closure. Birth Defects Res A Clin Mol Teratol 2010; 88(8): 653-669 doi: 10.1002/bdra.20676 pmid:20740593
32
Bayly R, Axelrod JD. Pointing in the right direction: new developments in the field of planar cell polarity. Nat Rev Genet 2011; 12(6): 385-391 doi: 10.1038/nrg2956 pmid:21502960
33
Goodrich LV, Strutt D. Principles of planar polarity in animal development. Development 2011; 138(10): 1877-1892 doi: 10.1242/dev.054080 pmid:21521735
34
Gray RS, Roszko I, Solnica-Krezel L. Planar cell polarity: coordinating morphogenetic cell behaviors with embryonic polarity. Dev Cell 2011; 21(1): 120-133 doi: 10.1016/j.devcel.2011.06.011 pmid:21763613
35
Henderson DJ, Chaudhry B. Getting to the heart of planar cell polarity signaling. Birth Defects Res A Clin Mol Teratol 2011; 91(6): 460-467 doi: 10.1002/bdra.20792 pmid:21538810
36
Heisenberg CP, Tada M, Rauch GJ, Saúde L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 2000; 405(6782): 76-81 doi: 10.1038/35011068 pmid:10811221
37
Wallingford JB, Rowning BA, Vogeli KM, Rothb?cher U, Fraser SE, Harland RM. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 2000; 405(6782): 81-85 doi: 10.1038/35011077 pmid:10811222
38
Kibar Z, Vogan KJ, Groulx N, Justice MJ, Underhill DA, Gros P, Gros P. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nat Genet 2001; 28(3): 251-255 doi: 10.1038/90081 pmid:11431695
39
Murdoch JN, Doudney K, Paternotte C, Copp AJ, Stanier P. Severe neural tube defects in the loop-tail mouse result from mutation of Lpp1, a novel gene involved in floor plate specification. Hum Mol Genet 2001; 10(22): 2593-2601 doi: 10.1093/hmg/10.22.2593 pmid:11709546
40
Tree DR, Ma D, Axelrod JD. A three-tiered mechanism for regulation of planar cell polarity. Semin Cell Dev Biol 2002; 13(3): 217-224 doi: 10.1016/S1084-9521(02)00042-3 pmid:12137730
41
Axelrod JD. Progress and challenges in understanding planar cell polarity signaling. Semin Cell Dev Biol 2009; 20(8): 964-971 doi: 10.1016/j.semcdb.2009.08.001 pmid:19665570
42
Ma D, Yang CH, McNeill H, Simon MA, Axelrod JD. Fidelity in planar cell polarity signalling. Nature 2003; 421(6922): 543-547 doi: 10.1038/nature01366 pmid:12540853
Jones C, Chen P. Planar cell polarity signaling in vertebrates. Bioessays 2007; 29(2): 120-132 doi: 10.1002/bies.20526 pmid:17226800
45
Greene ND, Stanier P, Copp AJ. Genetics of human neural tube defects. Hum Mol Genet 2009; 18(R2): R113-R129 doi: 10.1093/hmg/ddp347 pmid:19808787
46
Lawrence PA, Struhl G, Casal J. Planar cell polarity: one or two pathways? Nat Rev Genet 2007; 8(7): 555-563 doi: 10.1038/nrg2125 pmid:17563758
47
Lapébie P, Borchiellini C, Houliston E. Dissecting the PCP pathway: one or more pathways?: Does a separate Wnt-Fz-Rho pathway drive morphogenesis? Bioessays 2011; 33(10): 759-768 doi: 10.1002/bies.201100023 pmid: PMID:21919026
48
Chen WS, Antic D, Matis M, Logan CY, Povelones M, Anderson GA, Nusse R, Axelrod JD. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 2008; 133(6): 1093-1105 doi: 10.1016/j.cell.2008.04.048 pmid:18555784
49
Strutt D, Strutt H. Differential activities of the core planar polarity proteins during Drosophila wing patterning. Dev Biol 2007; 302(1): 181-194 doi: 10.1016/j.ydbio.2006.09.026 pmid:17045581
50
Lawrence PA, Casal J, Struhl G. Cell interactions and planar polarity in the abdominal epidermis of Drosophila. Development 2004; 131(19): 4651-4664 doi: 10.1242/dev.01351 pmid:15329345
51
Amonlirdviman K, Khare NA, Tree DR, Chen WS, Axelrod JD, Tomlin CJ. Mathematical modeling of planar cell polarity to understand domineering nonautonomy. Science 2005; 307(5708): 423-426 doi: 10.1126/science.1105471 pmid:15662015
52
Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 2006; 133(22): 4561-4572 doi: 10.1242/dev.02641 pmid:17075008
53
Katoh Y, Katoh M. Comparative genomics on Vangl1 and Vangl2 genes. Int J Oncol 2005; 26(5): 1435-1440 pmid:15809738
54
Kibar Z, Torban E, McDearmid JR, Reynolds A, Berghout J, Mathieu M, Kirillova I, De Marco P, Merello E, Hayes JM, Wallingford JB, Drapeau P, Capra V, Gros P. Mutations in VANGL1 associated with neural-tube defects. N Engl J Med 2007; 356(14): 1432-1437 doi: 10.1056/NEJMoa060651 pmid:17409324
55
Kibar Z, Bosoi CM, Kooistra M, Salem S, Finnell RH, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Novel mutations in VANGL1 in neural tube defects. Hum Mutat 2009; 30(7): E706-E715 doi: 10.1002/humu.21026 pmid:19319979
56
Reynolds A, McDearmid JR, Lachance S, De Marco P, Merello E, Capra V, Gros P, Drapeau P, Kibar Z. VANGL1 rare variants associated with neural tube defects affect convergent extension in zebrafish. Mech Dev 2010; 127(7-8): 385-392 doi: 10.1016/j.mod.2009.12.002 pmid:20043994
57
Bartsch O, Kirmes I, Thiede A, Lechno S, Gocan H, Florian IS, Haaf T, Zechner U, Sabova L, Horn F. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects. Mol Syndromol 2012; 3(2): 76-81 pmid:23326252
58
Lei YP, Zhang T, Li H, Wu BL, Jin L, Wang HY. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med 2010; 362(23): 2232-2235 doi: 10.1056/NEJMc0910820 pmid:20558380
59
Kibar Z, Salem S, Bosoi CM, Pauwels E, De Marco P, Merello E, Bassuk AG, Capra V, Gros P. Contribution of VANGL2 mutations to isolated neural tube defects. Clin Genet 2011; 80(1): 76-82 doi: 10.1111/j.1399-0004.2010.01515.x pmid:20738329
60
Schulte G, Bryja V. The Frizzled family of unconventional G-protein-coupled receptors. Trends Pharmacol Sci 2007; 28(10): 518-525 doi: 10.1016/j.tips.2007.09.001 pmid:17884187
61
Wang Y, Guo N, Nathans J. The role of Frizzled3 and Frizzled6 in neural tube closure and in the planar polarity of inner-ear sensory hair cells. J Neurosci 2006; 26(8): 2147-2156 doi: 10.1523/JNEUROSCI.4698-05.2005 pmid:16495441
62
Wang Y, Zhang J, Mori S, Nathans J. Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci 2006; 26(2): 355-364 doi: 10.1523/JNEUROSCI.3221-05.2006 pmid:16407530
63
Yu H, Smallwood PM, Wang Y, Vidaltamayo R, Reed R, Nathans J. Frizzled 1 and frizzled 2 genes function in palate, ventricular septum and neural tube closure: general implications for tissue fusion processes. Development 2010; 137(21): 3707-3717 doi: 10.1242/dev.052001 pmid:20940229
64
Sala CF, Formenti E, Terstappen GC, Caricasole A. Identification, gene structure, and expression of human frizzled-3 (FZD3). Biochem Biophys Res Commun 2000; 273(1): 27-34 doi: 10.1006/bbrc.2000.2882 pmid:10873558
65
Tokuhara M, Hirai M, Atomi Y, Terada M, Katoh M. Molecular cloning of human Frizzled-6. Biochem Biophys Res Commun 1998; 243(2): 622-627 doi: 10.1006/bbrc.1998.8143 pmid:9480858
66
De Marco P, Merello E, Rossi A, Piatelli G, Cama A, Kibar Z, Capra V. FZD6 is a novel gene for human neural tube defects. Hum Mutat 2012; 33(2): 384-390 doi: 10.1002/humu.21643 pmid:22045688
67
Takeichi M. The cadherin superfamily in neuronal connections and interactions. Nat Rev Neurosci 2007; 8(1): 11-20 doi: 10.1038/nrn2043 pmid:17133224
68
Robinson A, Escuin S, Doudney K, Vekemans M, Stevenson RE, Greene ND, Copp AJ, Stanier P. Mutations in the planar cell polarity genes CELSR1 and SCRIB are associated with the severe neural tube defect craniorachischisis. Hum Mutat 2012; 33(2): 440-447 doi: 10.1002/humu.21662 pmid:22095531
69
Allache R, De Marco P, Merello E, Capra V, Kibar Z. Role of the planar cell polarity gene CELSR1 in neural tube defects and caudal agenesis. Birth Defects Res A Clin Mol Teratol 2012; 94(3): 176-181 doi: 10.1002/bdra.23002 pmid:22371354
70
Capelluto DG, Kutateladze TG, Habas R, Finkielstein CV, He X, Overduin M. The DIX domain targets dishevelled to actin stress fibres and vesicular membranes. Nature 2002; 419(6908): 726-729 doi: 10.1038/nature01056 pmid:12384700
71
Wong HC, Bourdelas A, Krauss A, Lee HJ, Shao Y, Wu D, Mlodzik M, Shi DL, Zheng J. Direct binding of the PDZ domain of Dishevelled to a conserved internal sequence in the C-terminal region of Frizzled. Mol Cell 2003; 12(5): 1251-1260 doi: 10.1016/S1097-2765(03)00427-1 pmid:14636582
72
Wong HC, Mao J, Nguyen JT, Srinivas S, Zhang W, Liu B, Li L, Wu D, Zheng J. Structural basis of the recognition of the dishevelled DEP domain in the Wnt signaling pathway. Nat Struct Biol 2000; 7(12): 1178-1184 doi: 10.1038/82047 pmid:11101902
73
Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A. Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation. Development 2006; 133(9): 1767-1778 doi: 10.1242/dev.02347 pmid:16571627
74
Etheridge SL, Ray S, Li S, Hamblet NS, Lijam N, Tsang M, Greer J, Kardos N, Wang J, Sussman DJ, Chen P, Wynshaw-Boris A. Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development. PLoS Genet 2008; 4(11): e1000259 doi: 10.1371/journal.pgen.1000259 pmid:19008950
75
De Marco P, Merello E, Consales A, Piatelli G, Cama A, Kibar Z, Capra V. Genetic analysis of disheveled 2 and disheveled 3 in human neural tube defects. J Mol Neurosci 2013; 49(3): 582-588 doi: 10.1007/s12031-012-9871-9 pmid:22892949
76
Carreira-Barbosa F, Concha ML, Takeuchi M, Ueno N, Wilson SW, Tada M. Prickle 1 regulates cell movements during gastrulation and neuronal migration in zebrafish. Development 2003; 130(17): 4037-4046 doi: 10.1242/dev.00567 pmid:12874125
77
Takeuchi M, Nakabayashi J, Sakaguchi T, Yamamoto TS, Takahashi H, Takeda H, Ueno N. The prickle-related gene in vertebrates is essential for gastrulation cell movements. Curr Biol 2003; 13(8): 674-679 doi: 10.1016/S0960-9822(03)00245-8 pmid:12699625
78
Veeman MT, Slusarski DC, Kaykas A, Louie SH, Moon RT. Zebrafish prickle, a modulator of noncanonical Wnt/Fz signaling, regulates gastrulation movements. Curr Biol 2003; 13(8): 680-685 doi: 10.1016/S0960-9822(03)00240-9 pmid:12699626
79
Wen S, Zhu H, Lu W, Mitchell LE, Shaw GM, Lammer EJ, Finnell RH. Planar cell polarity pathway genes and risk for spina bifida. Am J Med Genet A 2010; 152A(2): 299-304 doi: 10.1002/ajmg.a.33230 pmid:20101694
80
Tao H, Manak JR, Sowers L, Mei X, Kiyonari H, Abe T, Dahdaleh NS, Yang T, Wu S, Chen S, Fox MH, Gurnett C, Montine T, Bird T, Shaffer LG, Rosenfeld JA, McConnell J, Madan-Khetarpal S, Berry-Kravis E, Griesbach H, Saneto RP, Scott MP, Antic D, Reed J, Boland R, Ehaideb SN, El-Shanti H, Mahajan VB, Ferguson PJ, Axelrod JD, Lehesjoki AE, Fritzsch B, Slusarski DC, Wemmie J, Ueno N, Bassuk AG. Mutations in prickle orthologs cause seizures in flies, mice, and humans. Am J Hum Genet 2011; 88(2): 138-149 doi: 10.1016/j.ajhg.2010.12.012 pmid:21276947
81
Bosoi CM, Capra V, Allache R, Trinh VQ, De Marco P, Merello E, Drapeau P, Bassuk AG, Kibar Z. Identification and characterization of novel rare mutations in the planar cell polarity gene PRICKLE1 in human neural tube defects. Hum Mutat 2011; 32(12): 1371-1375 doi: 10.1002/humu.21589 pmid:21901791
82
Gray RS, Abitua PB, Wlodarczyk BJ, Szabo-Rogers HL, Blanchard O, Lee I, Weiss GS, Liu KJ, Marcotte EM, Wallingford JB, Finnell RH. The planar cell polarity effector Fuz is essential for targeted membrane trafficking, ciliogenesis and mouse embryonic development. Nat Cell Biol 2009; 11(10): 1225-1232 doi: 10.1038/ncb1966 pmid:19767740
83
Heydeck W, Zeng H, Liu A. Planar cell polarity effector gene Fuzzy regulates cilia formation and Hedgehog signal transduction in mouse. Dev Dyn 2009; 238(12): 3035-3042 doi: 10.1002/dvdy.22130 pmid:19877275
84
Seo JH, Zilber Y, Babayeva S, Liu J, Kyriakopoulos P, De Marco P, Merello E, Capra V, Gros P, Torban E. Mutations in the planar cell polarity gene, Fuzzy, are associated with neural tube defects in humans. Hum Mol Genet 2011; 20(22): 4324-4333 doi: 10.1093/hmg/ddr359 pmid:21840926
85
Murdoch JN, Henderson DJ, Doudney K, Gaston-Massuet C, Phillips HM, Paternotte C, Arkell R, Stanier P, Copp AJ. Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse. Hum Mol Genet 2003; 12(2): 87-98 doi: 10.1093/hmg/ddg014 pmid:12499390
86
Cheyette BN, Waxman JS, Miller JR, Takemaru K, Sheldahl LC, Khlebtsova N, Fox EP, Earnest T, Moon RT. Dapper, a Dishevelled-associated antagonist of beta-catenin and JNK signaling, is required for notochord formation. Dev Cell 2002; 2(4): 449-461 doi: 10.1016/S1534-5807(02)00140-5 pmid:11970895
87
Suriben R, Kivim?e S, Fisher DA, Moon RT, Cheyette BN. Posterior malformations in Dact1 mutant mice arise through misregulated Vangl2 at the primitive streak. Nat Genet 2009; 41(9): 977-985 doi: 10.1038/ng.435 pmid:19701191
88
Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X, Chen YG. Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem 2010; 285(14): 11023-11030 doi: 10.1074/jbc.M109.085381 pmid:20145239
89
Yang X, Cheyette BN. SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice. J Biol Chem 2013; 288(28): 20111-20120 doi: 10.1074/jbc.M113.465427 pmid:23696638
90
Shi Y, Ding Y, Lei YP, Yang XY, Xie GM, Wen J, Cai CQ, Li H, Chen Y, Zhang T, Wu BL, Jin L, Chen YG, Wang HY. Identification of novel rare mutations of DACT1 in human neural tube defects. Hum Mutat 2012; 33(10): 1450-1455 doi: 10.1002/humu.22121 pmid:22610794