Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2015, Vol. 9 Issue (3): 331-343   https://doi.org/10.1007/s11684-015-0409-8
  本期目录
MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility
Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng(),Chun-Ming Wong()
State Key Laboratory for Liver Research and Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
 全文: PDF(1927 KB)   HTML
Abstract

MicroRNAs (miRNAs), an important class of small non-coding RNAs, regulate gene expression at the post-transcriptional level. miRNAs are involved in a wide range of biological processes and implicated in different diseases, including cancers. In this study, miRNA profiling and qRT-PCR validation revealed that miR-142-3p and miR-142-5p were significantly downregulated in hepatocellular carcinoma (HCC) and their expression levels decreased as the disease progressed. The ectopic expression of miR-142 significantly reduced HCC cell migration and invasion. Overexpression of either miR-142-3p or miR-142-5p suppressed HCC cell migration, and overexpression of both synergistically inhibited cell migration, which indicated that miR-142-3p and miR-142-5p may cooperatively regulate cell movement. miR-142-3p and miR-142-5p, which are mature miRNAs derived from the 3′- and 5′-strands of the precursor miR-142, target distinct pools of genes because of their different seed sequences. Pathway enrichment analysis showed a strong association of the putative gene targets of miR-142-3p and miR-142-5p with several cell motility-associated pathways, including those regulating actin cytoskeleton, adherens junctions, and focal adhesion. Importantly, a number of the putative gene targets were also significantly upregulated in human HCC cells. Moreover, overexpression of miR-142 significantly abrogated stress fiber formation in HCC cells and led to cell shrinkage. This study shows that mature miR-142 pairs collaboratively regulate different components of distinct signaling cascades and therefore affects the motility of HCC cells.

Key wordshepatocellular carcinoma    microRNA    metastasis    cytoskeletal reorganization
收稿日期: 2015-01-16      出版日期: 2015-08-26
Corresponding Author(s): Irene Oi-Lin Ng,Chun-Ming Wong   
 引用本文:   
. [J]. Frontiers of Medicine, 2015, 9(3): 331-343.
Felice Ho-Ching Tsang,Sandy Leung-Kuen Au,Lai Wei,Dorothy Ngo-Yin Fan,Joyce Man-Fong Lee,Carmen Chak-Lui Wong,Irene Oi-Lin Ng,Chun-Ming Wong. MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility. Front. Med., 2015, 9(3): 331-343.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-015-0409-8
https://academic.hep.com.cn/fmd/CN/Y2015/V9/I3/331
Fig.1  
Fig.2  
Fig.3  
KEGG pathway name KEGG pathway number Number of genes -ln (P value)
Colorectal cancer hsa05210 18 13.04
Phosphatidylinositol signaling system hsa04070 16 13.04
Regulation of actin cytoskeleton hsa04810 31 11.25
Adherens junction hsa04520 15 10.59
Pancreatic cancer hsa05212 15 10.31
Inositol phosphate metabolism hsa00562 11 9.34
Ubiquitin mediated proteolysis hsa04120 21 9.03
Chronic myeloid leukemia hsa05220 14 7.77
Renal cell carcinoma hsa05211 13 7.58
mTOR signaling pathway hsa04150 10 7.16
TGF-β signaling pathway hsa04350 15 6.85
Insulin signaling pathway hsa04910 19 5.48
Amyotrophic lateral sclerosis (ALS) hsa05030 5 4.99
MAPK signaling pathway hsa04010 29 4.93
Tight junction hsa04530 18 4.87
Wnt signaling pathway hsa04310 19 4.75
Long-term potentiation hsa04720 10 4.08
Glioma hsa05214 10 3.93
Acute myeloid leukemia hsa05221 9 3.80
Focal adhesion hsa04510 22 3.65
Oxidative phosphorylation hsa00190 2 3.48
Cell communication hsa01430 3 3.40
Calcium signaling pathway hsa04020 19 3.24
Axon guidance hsa04360 15 3.03
Melanoma hsa05218 10 2.92
Ribosome hsa03010 1 2.88
Jak-STAT signaling pathways hsa04630 17 2.61
Prostate cancer hsa05215 11 2.35
T cell receptor signaling pathway hsa04660 11 2.27
Circadian rhythm hsa04710 3 2.26
Tab.1  
Fig.4  
Fig.5  
1 Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer 2006; 6(4): 259–269
https://doi.org/10.1038/nrc1840 pmid: 16557279
2 Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007; 129(7): 1401–1414
https://doi.org/10.1016/j.cell.2007.04.040 pmid: 17604727
3 Zhang X, Yan Z, Zhang J, Gong L, Li W, Cui J, Liu Y, Gao Z, Li J, Shen L, Lu Y. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann Oncol 2011; 22(10): 2257–2266
https://doi.org/10.1093/annonc/mdq758 pmid: 21343377
4 Wu L, Cai C, Wang X, Liu M, Li X, Tang H. MicroRNA-142-3p, a new regulator of RAC1, suppresses the migration and invasion of hepatocellular carcinoma cells. FEBS Lett 2011; 585(9): 1322–1330
https://doi.org/10.1016/j.febslet.2011.03.067 pmid: 21482222
5 Shen WW, Zeng Z, Zhu WX, Fu GH. miR-142-3p functions as a tumor suppressor by targeting CD133, ABCG2, and Lgr5 in colon cancer cells. J Mol Med (Berl)2013; 91(8): 989–1000
https://doi.org/10.1007/s00109-013-1037-x pmid: 23619912
6 MacKenzie TN, Mujumdar N, Banerjee S, Sangwan V, Sarver A, Vickers S, Subramanian S, Saluja AK. Triptolide induces the expression of miR-142-3p: a negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Mol Cancer Ther 2013; 12(7): 1266–1275
https://doi.org/10.1158/1535-7163.MCT-12-1231 pmid: 23635652
7 Wong CM, Kai AK, Tsang FH, Ng IO. Regulation of hepatocarcinogenesis by microRNAs. Front Biosci (Elite Ed)2013; 5: 49–60
pmid: 23276969
8 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15–20
https://doi.org/10.1016/j.cell.2004.12.035 pmid: 15652477
9 Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet 2006; 38(12): 1452–1456
https://doi.org/10.1038/ng1910 pmid: 17072316
10 Maragkakis M, Alexiou P, Papadopoulos GL, Reczko M, Dalamagas T, Giannopoulos G, Goumas G, Koukis E, Kourtis K, Simossis VA, Sethupathy P, Vergoulis T, Koziris N, Sellis T, Tsanakas P, Hatzigeorgiou AG. Accurate microRNA target prediction correlates with protein repression levels. BMC Bioinformatics 2009; 10(1): 295
https://doi.org/10.1186/1471-2105-10-295 pmid: 19765283
11 Papadopoulos GL, Alexiou P, Maragkakis M, Reczko M, Hatzigeorgiou AG. DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 2009; 25(15): 1991–1993
https://doi.org/10.1093/bioinformatics/btp299 pmid: 19435746
12 Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27–30
https://doi.org/10.1093/nar/28.1.27 pmid: 10592173
13 Wong CM, Wong CC, Lee JM, Fan DN, Au SL, Ng IO. Sequential alterations of microRNA expression in hepatocellular carcinoma development and venous metastasis. Hepatology 2012; 55(5): 1453–1461
https://doi.org/10.1002/hep.25512 pmid: 22135159
14 Wong CC, Wong CM, Tung EK, Man K, Ng IO. Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology 2009; 49(5): 1583–1594
https://doi.org/10.1002/hep.22836 pmid: 19205033
15 Fukui K, Tamura S, Wada A, Kamada Y, Sawai Y, Imanaka K, Kudara T, Shimomura I, Hayashi N. Expression and prognostic role of RhoA GTPases in hepatocellular carcinoma. J Cancer Res Clin Oncol 2006; 132(10): 627–633
https://doi.org/10.1007/s00432-006-0107-7 pmid: 16810502
16 Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell 2003; 115(2): 209–216
https://doi.org/10.1016/S0092-8674(03)00801-8 pmid: 14567918
17 Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115(2): 199–208
https://doi.org/10.1016/S0092-8674(03)00759-1 pmid: 14567917
18 Ro S, Park C, Young D, Sanders KM, Yan W. Tissue-dependent paired expression of miRNAs. Nucleic Acids Res 2007; 35(17): 5944–5953
https://doi.org/10.1093/nar/gkm641 pmid: 17726050
19 Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 2011; 39(Database issue): D152–D157
https://doi.org/10.1093/nar/gkq1027 pmid: 21037258
20 Shan SW, Fang L, Shatseva T, Rutnam ZJ, Yang X, Du W, Lu WY, Xuan JW, Deng Z, Yang BB. Mature miR-17-5p and passenger miR-17-3p induce hepatocellular carcinoma by targeting PTEN, GalNT7 and vimentin in different signal pathways. J Cell Sci 2013; 126(Pt 6): 1517–1530
https://doi.org/10.1242/jcs.122895 pmid: 23418359
21 Uchino K, Takeshita F, Takahashi RU, Kosaka N, Fujiwara K, Naruoka H, Sonoke S, Yano J, Sasaki H, Nozawa S, Yoshiike M, Kitajima K, Chikaraishi T, Ochiya T. Therapeutic effects of microRNA-582-5p and <?Pub Caret?>-3p on the inhibition of bladder cancer progression. Mol Ther 2013; 21(3): 610–619
https://doi.org/10.1038/mt.2012.269 pmid: 23295946
22 Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY, Chen LR, Wang Y, Wang XZ, Bi LX, Liu N, Yu Y, Gao D, Huang BT, Wang J, Zhou DB, Gong JN, Zhao HL, Bi XH, Yu J, Zhang JW. miR-29a and miR-142-3p downregulation and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep 2012; 39(3): 2713–2722
https://doi.org/10.1007/s11033-011-1026-5 pmid: 21678057
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed