Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

邮发代号 80-967

2019 Impact Factor: 3.421

Frontiers of Medicine  2016, Vol. 10 Issue (3): 286-296   https://doi.org/10.1007/s11684-016-0456-9
  本期目录
Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells
Xiaoyu Wang1,Yuxuan Gao1,Haigang Shi2,Na Liu1,Wei Zhang2,Hongbo Li1,*()
1. Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
2. Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
 全文: PDF(456 KB)   HTML
Abstract

Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.

Key wordsDCEF    migration    osteogenesis differentiation    rBMSCs    SDF-1/CXCR-4
收稿日期: 2016-02-09      出版日期: 2016-08-30
Corresponding Author(s): Hongbo Li   
 引用本文:   
. [J]. Frontiers of Medicine, 2016, 10(3): 286-296.
Xiaoyu Wang,Yuxuan Gao,Haigang Shi,Na Liu,Wei Zhang,Hongbo Li. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells. Front. Med., 2016, 10(3): 286-296.
 链接本文:  
https://academic.hep.com.cn/fmd/CN/10.1007/s11684-016-0456-9
https://academic.hep.com.cn/fmd/CN/Y2016/V10/I3/286
Fig.1  
Direction Group
A1 A2 A3
Top Positive electrode Negative electrode
Bottom Negative electrode Positive electrode
Tab.1  
Group B1 B2 B3
Upper chamber rBMSCs rBMSCs rBMSCs
Lower chamber DMEM DMEM+ SDF-1 DMEM+ SDF-1+ AMD3100
Group B4 B5 B6
Upper chamber rBMSCs+ DCEF rBMSCs+ DCEF rBMSCs+ DCEF
Lower chamber DMEM DMEM+ SDF-1 DMEM+ SDF-1+ AMD3100
Tab.2  
Factor Group
C1 C2 C3 C4
OIF - - + +
DCEF - + - +
Tab.3  
Gene Primer sequences
CXCR4 Forward: 5′-TGACGGACAAGTACAGGCTGC-3′Reverse: 5′-CCAGAAGGGAAGCGTGATGA-3′
β-actin Forward: 5′-ATATCGCTGCGCTCGTCGTC-3′Reverse: 5′-CCTTGGGTCAGGTTTAGAG-3′
RUNX2 Forward: 5′-CCCGTGGCCTTCAAGGT-3′Reverse: 5′-CGTTACCCGCCATGACAGTA-3′
ALP Forward: 5′-CTGCCTACTTGTGTGGCGTGA-3′Reverse: 5′-CCACCCATGATCACGTGCATA-3′
Tab.4  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Ann Biomed Eng 2004; 32(1): 160–165
https://doi.org/10.1023/B:ABME.0000007800.89194.95 pmid: 14964731
2 Kumar A, Nune KC, Misra RD. Electric field-mediated growth of osteoblasts — the significant impact of dynamic flow of medium. Biomater Sci 2016; 4(1): 136–144
https://doi.org/10.1039/C5BM00350D pmid: 26465881
3 De Bari C, Dell’Accio F, Vandenabeele F, Vermeesch JR, Raymackers JM, Luyten FP. Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 2003; 160(6): 909–918
https://doi.org/10.1083/jcb.200212064 pmid: 12629053
4 Fong EL, Chan CK, Goodman SB. Stem cell homing in musculoskeletal injury. Biomaterials 2011; 32(2): 395–409
https://doi.org/10.1016/j.biomaterials.2010.08.101 pmid: 20933277
5 Korohoda W, Grys M, Madeja Z. Reversible and irreversible electroporation of cell suspensions flowing through a localized DC electric field. Cell Mol Biol Lett 2013; 18(1): 102–119
https://doi.org/10.2478/s11658-012-0042-3 pmid: 23271434
6 Vanegas-Acosta JC, Garzón-Alvarado DA, Lancellotti V. Numerical simulation of electrically stimulated osteogenesis in dental implants. Bioelectrochemistry 2014; 96: 21–36
https://doi.org/10.1016/j.bioelechem.2013.12.001 pmid: 24413341
7 Funk RH, Monsees T, Ozkucur N. Electromagnetic effects: from cell biology to medicine. Prog Histochem Cytochem 2009; 43(4):177–264 doi: 10.1016/j.proghi.2008.07.001 PMID: 19167986
8 Zhao M. Electrical fields in wound healing—an overriding signal that directs cell migration. Semin Cell Dev Biol 2009; 20(6): 674–682
https://doi.org/10.1016/j.semcdb.2008.12.009 pmid: 19146969
9 Chiang M, Robinson KR, Vanable JW Jr. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp Eye Res 1992; 54(6): 999–1003
https://doi.org/10.1016/0014-4835(92)90164-N pmid: 1521590
10 Zhao Z, Watt C, Karystinou A, Roelofs AJ, McCaig CD, Gibson IR, De Bari C. Directed migration of human bone marrow mesenchymal stem cells in a physiological direct current electric field. Eur Cell Mater 2011; 22: 344–358
pmid: 22125259
11 Lee JW, Lee J, Moon EY. HeLa human cervical cancer cell migration is inhibited by treatment with dibutyryl-cAMP. Anticancer Res 2014; 34(7): 3447–3455
pmid: 24982353
12 Pullar CE, Isseroff RR. Cyclic AMP mediates keratinocyte directional migration in an electric field. J Cell Sci 2005; 118(Pt 9): 2023–2034
https://doi.org/10.1242/jcs.02330 pmid: 15840650
13 Finkelstein E, Chang W, Chao PH, Gruber D, Minden A, Hung CT, Bulinski JC. Roles of microtubules, cell polarity and adhesion in electric-field-mediated motility of 3T3 fibroblasts. J Cell Sci 2004; 117(Pt 8): 1533–1545
https://doi.org/10.1242/jcs.00986 pmid: 15020680
14 Pullar CE, Isseroff RR, Nuccitelli R. Cyclic AMP-dependent protein kinase A plays a role in the directed migration of human keratinocytes in a DC electric field. Cell Motil Cytoskeleton 2001; 50(4): 207–217
https://doi.org/10.1002/cm.10009 pmid: 11807941
15 Shichinohe H, Kuroda S, Yano S, Hida K, Iwasaki Y. Role of SDF-1/CXCR4 system in survival and migration of bone marrow stromal cells after transplantation into mice cerebral infarct. Brain Res 2007; 1183: 138–147
https://doi.org/10.1016/j.brainres.2007.08.091 pmid: 17976542
16 Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284(5411): 143–147
https://doi.org/10.1126/science.284.5411.143 pmid: 10102814
17 McCaig CD, Song B, Rajnicek AM. Electrical dimensions in cell science. J Cell Sci 2009; 122(Pt 23): 4267–4276
https://doi.org/10.1242/jcs.023564 pmid: 19923270
18 Yao L, McCaig CD, Zhao M. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 2009; 19(9): 855–868
https://doi.org/10.1002/hipo.20569 pmid: 19280605
19 Zhao Z, Qin L, Reid B, Pu J, Hara T, Zhao M. Directing migration of endothelial progenitor cells with applied DC electric fields. Stem Cell Res (Amst) 2012; 8(1): 38–48
https://doi.org/10.1016/j.scr.2011.08.001 pmid: 22099019
20 Hammerick KE, Longaker MT, Prinz FB. In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun 2010; 397(1): 12–17
https://doi.org/10.1016/j.bbrc.2010.05.003 pmid: 20452327
21 Ferrier J, Ross SM, Kanehisa J, Aubin JE. Osteoclasts and osteoblasts migrate in opposite directions in response to a constant electrical field. J Cell Physiol 1986; 129(3): 283–288
https://doi.org/10.1002/jcp.1041290303 pmid: 3782308
22 Özkucur N, Monsees TK, Perike S, Do HQ, Funk RH. Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells. PLoS ONE 2009; 4(7): e6131
https://doi.org/10.1371/journal.pone.0006131 pmid: 19584927
23 Luo XF, Huang Y, Fan P, Peng B, Liu R, Bai H. Directed migration and morphological changes of cultured trophoblast cells in small electric fields. J Sichuan Univ (MedSci Edition ) (Sichuan Da Xue Xue Bao Yi Xue Ban) 2010; 41(5): 771–774, 802 (in Chinese) PMID:21302438
24 Zhang J, Neoh KG, Hu X, Kang ET, Wang W. Combined effects of direct current stimulation and immobilized BMP-2 for enhancement of osteogenesis. Biotechnol Bioeng 2013; 110(5):1466–1475 doi: 10.1002/bit.24796
25 Gamboa OL, Pu J, Townend J, Forrester JV, Zhao M, McCaig C, Lois N. Electrical estimulation of retinal pigment epithelial cells. Exp Eye Res 2010; 91(2): 195–204
https://doi.org/10.1016/j.exer.2010.04.018 pmid: 20457155
26 de Oliveira GL, de Lima KW, Colombini AM, Pinheiro DG, Panepucci RA, Palma PV, Brum DG, Covas DT, Simões BP, de Oliveira MC, Donadi EA, Malmegrim KC. Bone marrow mesenchymal stromal cells isolated from multiple sclerosis patients have distinct gene expression profile and decreased suppressive function compared with healthy counterparts. Cell Transplant 2015; 24(2): 151–165
https://doi.org/10.3727/096368913X675142 pmid: 24256874
27 Siddiqui S, Arshad M. Osteogenic potential of punica granatum through matrix mineralization, cell cycle progression and runx2 gene expression in primary rat osteoblasts. Daru 2014; 22(1): 72
https://doi.org/10.1186/s40199-014-0072-7 pmid: 25409708
28 Fernández I, Tiago DM, Laizé V, Leonor Cancela M, Gisbert E. Retinoic acid differentially affects in vitro proliferation, differentiation and mineralization of two fish bone-derived cell lines: different gene expression of nuclear receptors and ECM proteins. J Steroid Biochem Mol Biol 2014; 140: 34–43
https://doi.org/10.1016/j.jsbmb.2013.11.012 pmid: 24291400
29 Gordon JA, Tye CE, Sampaio AV, Underhill TM, Hunter GK, Goldberg HA. Bone sialoprotein expression enhances osteoblast differentiation and matrix mineralization in vitro. Bone 2007; 41(3): 462–473
https://doi.org/10.1016/j.bone.2007.04.191 pmid: 17572166
30 Yilmaz G, Hwang S, Oto M, Kruse R, Rogers KJ, Bober MB, Cahill PJ, Shah SA. Surgical treatment of scoliosis in osteogenesis imperfecta with cement-augmented pedicle screw instrumentation. J Spinal Disord Tech 2014; 27(3): 174–180
https://doi.org/10.1097/BSD.0b013e3182624b76 pmid: 24945295
31 Luan J, Cui Y, Zhang Y, Zhou X, Zhang G, Han J. Effect of CXCR4 inhibitor AMD3100 on alkaline phosphatase activity and mineralization in osteoblastic MC3T3-E1 cells. Biosci Trends 2012; 6(2): 63–69
pmid: 22621988
32 Hronik-Tupaj M, Rice WL, Cronin-Golomb M, Kaplan DL, Georgakoudi I. Osteoblastic differentiation and stress response of human mesenchymal stem cells exposed to alternating current electric fields. Biomed Eng Online 2011; 10(1): 9
https://doi.org/10.1186/1475-925X-10-9 pmid: 21269490
33 Kawakami Y, Ii M, Matsumoto T, Kuroda R, Kuroda T, Kwon SM, Kawamoto A, Akimaru H, Mifune Y, Shoji T, Fukui T, Kurosaka M, Asahara T. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing. J Bone Miner Res 2015; 30(1): 95–105
https://doi.org/10.1002/jbmr.2318 pmid: 25130304
34 Leppik LP, Froemel D, Slavici A, Ovadia ZN, Hudak L, Henrich D, Marzi I, Barker JH. Effects of electrical stimulation on rat limb regeneration, a new look at an old model. Sci Rep 2015; 5: 18353
https://doi.org/10.1038/srep18353 pmid: 26678416
35 Grymula K, Tarnowski M, Wysoczynski M, Drukala J, Barr FG, Ratajczak J, Kucia M, Ratajczak MZ. Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer 2010; 127(11): 2554–2568
https://doi.org/10.1002/ijc.25245 pmid: 20162608
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed