1. School of Life Science, Shandong University, Jinan 250100, China 2. Rizhao Polytechnic, Rizhao 276826, China 3. The Second Hospital of Shandong University, Jinan 250033, China 4. Electron Microscopy Laboratory, Shandong Institute of Otolaryngology, Jinan 250022, China 5. Laboratory of Electron Microscopy, Jinan WEI-YA Biotech Company, Jinan 250100, China 6. Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
Tprn encodes the taperin protein, which is concentrated in the tapered region of hair cell stereocilia in the inner ear. In humans, TPRN mutations cause autosomal recessive nonsyndromic deafness (DFNB79) by an unknown mechanism. To determine the role of Tprn in hearing, we generated Tprn-null mice by clustered regularly interspaced short palindromic repeat/Cas9 genome-editing technology from a CBA/CaJ background. We observed significant hearing loss and progressive degeneration of stereocilia in the outer hair cells of Tprn-null mice starting from postnatal day 30. Transmission electron microscopy images of stereociliary bundles in the mutant mice showed some stereociliary rootlets with curved shafts. The central cores of the stereociliary rootlets possessed hollow structures with surrounding loose peripheral dense rings. Radixin, a protein expressed at stereocilia tapering, was abnormally dispersed along the stereocilia shafts in Tprn-null mice. The expression levels of radixin and β-actin significantly decreased. We propose that Tprn is critical to the retention of the integrity of the stereociliary rootlet. Loss of Tprn in Tprn-null mice caused the disruption of the stereociliary rootlet, which resulted in damage to stereociliary bundles and hearing impairments. The generated Tprn-null mice are ideal models of human hereditary deafness DFNB79.
LG Tilney, JC Saunders. Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 1983; 96(3): 807–821 https://doi.org/10.1083/jcb.96.3.807
pmid: 6682110
4
DN Furness, S Mahendrasingam, M Ohashi, R Fettiplace, CM Hackney. The dimensions and composition of stereociliary rootlets in mammalian cochlear hair cells: comparison between high- and low-frequency cells and evidence for a connection to the lateral membrane. J Neurosci 2008; 28(25): 6342–6353 https://doi.org/10.1523/JNEUROSCI.1154-08.2008
pmid: 18562604
5
U Müller, PG Barr-Gillespie. New treatment options for hearing loss. Nat Rev Drug Discov 2015; 14(5): 346–365 https://doi.org/10.1038/nrd4533
pmid: 25792261
LH Gagnon, CM Longo-Guess, M Berryman, JB Shin, KW Saylor, H Yu, PG Gillespie, KR Johnson. The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci 2006; 26(40): 10188–10198 https://doi.org/10.1523/JNEUROSCI.2166-06.2006
pmid: 17021174
8
R Goodyear, G Richardson. Distribution of the 275 kD hair cell antigen and cell surface specialisations on auditory and vestibular hair bundles in the chicken inner ear. J Comp Neurol 1992; 325(2): 243–256 https://doi.org/10.1002/cne.903250208
pmid: 1281174
9
DW Anderson, FJ Probst, IA Belyantseva, RA Fridell, L Beyer, DM Martin, D Wu, B Kachar, TB Friedman, Y Raphael, SA Camper. The motor and tail regions of myosin XV are critical for normal structure and function of auditory and vestibular hair cells. Hum Mol Genet 2000; 9(12): 1729–1738 https://doi.org/10.1093/hmg/9.12.1729
pmid: 10915760
10
T Hasson, PG Gillespie, JA Garcia, RB MacDonald, Y Zhao, AG Yee, MS Mooseker, DP Corey. Unconventional myosins in inner-ear sensory epithelia. J Cell Biol 1997; 137(6): 1287–1307 https://doi.org/10.1083/jcb.137.6.1287
pmid: 9182663
11
F Pataky, R Pironkova, AJ Hudspeth. Radixin is a constituent of stereocilia in hair cells. Proc Natl Acad Sci USA 2004; 101(8): 2601–2606 https://doi.org/10.1073/pnas.0308620100
pmid: 14983055
12
S Bau, N Schracke, M Kränzle, H Wu, PF Stähler, JD Hoheisel, M Beier, D Summerer. Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays. Anal Bioanal Chem 2009; 393(1): 171–175 https://doi.org/10.1007/s00216-008-2460-7
pmid: 18958448
13
Y Li, E Pohl, R Boulouiz, M Schraders, G Nürnberg, M Charif, RJ Admiraal, S von Ameln, I Baessmann, M Kandil, JA Veltman, P Nürnberg, C Kubisch, A Barakat, H Kremer, B Wollnik. Mutations in TPRN cause a progressive form of autosomal-recessive nonsyndromic hearing loss. Am J Hum Genet 2010; 86(3): 479–484 https://doi.org/10.1016/j.ajhg.2010.02.003
pmid: 20170898
14
AU Rehman, RJ Morell, IA Belyantseva, SY Khan, ET Boger, M Shahzad, ZM Ahmed, S Riazuddin, SN Khan, S Riazuddin, TB Friedman. Targeted capture and next-generation sequencing identifies C9orf75, encoding taperin, as the mutated gene in nonsyndromic deafness DFNB79. Am J Hum Genet 2010; 86(3): 378–388 https://doi.org/10.1016/j.ajhg.2010.01.030
pmid: 20170899
15
FT Salles, LR Andrade, S Tanda, M Grati, KL Plona, LH Gagnon, KR Johnson, B Kachar, MA Berryman. CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI. Cytoskeleton (Hoboken) 2014; 71(1): 61–78 https://doi.org/10.1002/cm.21159
pmid: 24285636
16
B Zhao, Z Wu, U Müller. Murine Fam65b forms ring-like structures at the base of stereocilia critical for mechanosensory hair cell function. eLife 2016; 5: 5 https://doi.org/10.7554/eLife.14222
pmid: 27269051
17
M Chen, Q Wang, GH Zhu, P Hu, Y Zhou, T Wang, RS Lai, ZA Xiao, DH Xie. Progressive hearing loss and degeneration of hair cell stereocilia in taperin gene knockout mice. Biochem Biophys Res Commun 2016; 479(4): 703–707 https://doi.org/10.1016/j.bbrc.2016.09.148
pmid: 27693694
KA Steigelman, A Lelli, X Wu, J Gao, S Lin, K Piontek, C Wodarczyk, A Boletta, H Kim, F Qian, G Germino, GS Géléoc, JR Holt, J Zuo. Polycystin-1 is required for stereocilia structure but not for mechanotransduction in inner ear hair cells. J Neurosci 2011; 31(34): 12241–12250 https://doi.org/10.1523/JNEUROSCI.6531-10.2011
pmid: 21865467
21
Y Men, A Zhang, H Li, T Zhang, Y Jin, H Li, J Zhang, J Gao. LKB1 is required for the development and maintenance of stereocilia in inner ear hair cells in mice. PLoS One 2015; 10(8): e0135841 https://doi.org/10.1371/journal.pone.0135841
pmid: 26274331
22
A Lelli, Y Asai, A Forge, JR Holt, GS Géléoc. Tonotopic gradient in the developmental acquisition of sensory transduction in outer hair cells of the mouse cochlea. J Neurophysiol 2009; 101(6): 2961–2973 https://doi.org/10.1152/jn.00136.2009
pmid: 19339464
23
RJ Goodyear, W Marcotti, CJ, Kros GP Richardson. Development and properties of stereociliary link types in hair cells of the mouse cochlea. J Comp Neurol 2005; 485(1): 75–85 doi:10.1002/cne.20513 PMID:15776440
24
S Kitajiri, K Fukumoto, M Hata, H Sasaki, T Katsuno, T Nakagawa, J Ito, S Tsukita, S Tsukita. Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J Cell Biol 2004; 166(4): 559–570 https://doi.org/10.1083/jcb.200402007
pmid: 15314067
25
CA Kolb, MA Käser, J Kopecký, G Zotz, M Riederer, EE Pfündel. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol 2001; 127(3): 863–875 https://doi.org/10.1104/pp.010373
pmid: 11706169
26
D Kopecky, M Hayde, AR Prusa, KP Adlassnig. Knowledge-based interpretation of toxoplasmosis serology test results including fuzzy temporal concepts—the ToxoNet system. Stud Health Technol Inform 2001; 84(Pt 1): 484–488
pmid: 11604787
27
SP Francis, JF Krey, ES Krystofiak, R Cui, S Nanda, W Xu, B Kachar, PG Barr-Gillespie, JB Shin. A short splice form of Xin-actin binding repeat containing 2 (XIRP2) lacking the Xin repeats is required for maintenance of stereocilia morphology and hearing function. J Neurosci 2015; 35(5): 1999–2014 https://doi.org/10.1523/JNEUROSCI.3449-14.2015
pmid: 25653358
28
BJ Perrin, DM Strandjord, P Narayanan, DM Henderson, KR Johnson, JM Ervasti. b-Actin and fascin-2 cooperate to maintain stereocilia length. J Neurosci 2013; 33(19): 8114–8121 https://doi.org/10.1523/JNEUROSCI.0238-13.2013
pmid: 23658152
29
SY Khan, S Riazuddin, M Shahzad, N Ahmed, AU Zafar, AU Rehman, RJ Morell, AJ Griffith, ZM Ahmed, S Riazuddin, TB Friedman. DFNB79: reincarnation of a nonsyndromic deafness locus on chromosome 9q34.3. Eur J Hum Genet 2010; 18(1): 125–129 https://doi.org/10.1038/ejhg.2009.121
pmid: 19603065
30
L Zheng, G Sekerková, K Vranich, LG Tilney, E Mugnaini, JR Bartles. The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 2000; 102(3): 377–385 https://doi.org/10.1016/S0092-8674(00)00042-8
pmid: 10975527
31
AW Peng, IA Belyantseva, PD Hsu, TB Friedman, S Heller. Twinfilin 2 regulates actin filament lengths in cochlear stereocilia. J Neurosci 2009; 29(48): 15083–15088 https://doi.org/10.1523/JNEUROSCI.2782-09.2009
pmid: 19955359
32
G Sekerková, CP Richter, JR Bartles. Roles of the espin actin-bundling proteins in the morphogenesis and stabilization of hair cell stereocilia revealed in CBA/CaJ congenic jerker mice. PLoS Genet 2011; 7(3): e1002032 https://doi.org/10.1371/journal.pgen.1002032
pmid: 21455486
33
DN Furness, SL Johnson, U Manor, L Rüttiger, A Tocchetti, N Offenhauser, J Olt, RJ Goodyear, S Vijayakumar, Y Dai, CM Hackney, C Franz, PP Di Fiore, S Masetto, SM Jones, M Knipper, MC Holley, GP Richardson, B Kachar, W Marcotti. Progressive hearing loss and gradual deterioration of sensory hair bundles in the ears of mice lacking the actin-binding protein Eps8L2. Proc Natl Acad Sci USA 2013; 110(34): 13898–13903 https://doi.org/10.1073/pnas.1304644110
pmid: 23918390
34
GI Frolenkov, IA Belyantseva, TB Friedman, AJ Griffith. Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 2004; 5(7): 489–498 https://doi.org/10.1038/nrg1377
pmid: 15211351
35
C Petit, GP Richardson. Linking genes underlying deafness to hair-bundle development and function. Nat Neurosci 2009; 12(6): 703–710 https://doi.org/10.1038/nn.2330
pmid: 19471269
H Shahin, T Walsh, T Sobe, J Abu Sa’ed, A Abu Rayan, ED Lynch, MK Lee, KB Avraham, MC King, M Kanaan. Mutations in a novel isoform of TRIOBP that encodes a filamentous-actin binding protein are responsible for DFNB28 recessive nonsyndromic hearing loss. Am J Hum Genet 2006; 78(1): 144–152 https://doi.org/10.1086/499495
pmid: 16385458
S Kitajiri, T Sakamoto, IA Belyantseva, RJ Goodyear, R Stepanyan, I Fujiwara, JE Bird, S Riazuddin, S Riazuddin, ZM Ahmed, JE Hinshaw, J Sellers, JR Bartles, JA Hammer 3rd, GP Richardson, AJ Griffith, GI Frolenkov, TB Friedman. Actin-bundling protein TRIOBP forms resilient rootlets of hair cell stereocilia essential for hearing. Cell 2010; 141(5): 786–798 https://doi.org/10.1016/j.cell.2010.03.049
pmid: 20510926