Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury
Bin Yu, Xiaosong Gu()
Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
The inhibitory environment that surrounds the lesion site and the lack of intrinsic regenerative capacity of the adult mammalian central nervous system (CNS) impede the regrowth of injured axons and thereby the reestablishment of neural circuits required for functional recovery after spinal cord injuries (SCI). To circumvent these barriers, biomaterial scaffolds are applied to bridge the lesion gaps for the regrowing axons to follow, and, often by combining stem cell transplantation, to enable the local environment in the growth-supportive direction. Manipulations, such as the modulation of PTEN/mTOR pathways, can also enhance intrinsic CNS axon regrowth after injury. Given the complex pathophysiology of SCI, combining biomaterial scaffolds and genetic manipulation may provide synergistic effects and promote maximal axonal regrowth. Future directions will primarily focus on the translatability of these approaches and promote therapeutic avenues toward the functional rehabilitation of patients with SCIs.
ORaineteau, ME Schwab. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev Neurosci 2001; 2(4): 263–273 https://doi.org/10.1038/35067570
pmid: 11283749
2
LConforti, J Gilley, MPColeman. Wallerian degeneration: an emerging axon death pathway linking injury and disease. Nat Rev Neurosci 2014; 15(6): 394–409 https://doi.org/10.1038/nrn3680
pmid: 24840802
3
SDavid, A Kroner. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011; 12(7): 388–399 https://doi.org/10.1038/nrn3053
pmid: 21673720
4
YTaoka, K Okajima, MUchiba, KMurakami, SKushimoto, MJohno, MNaruo, HOkabe, KTakatsuki. Role of neutrophils in spinal cord injury in the rat. Neuroscience 1997; 79(4): 1177–1182 https://doi.org/10.1016/S0306-4522(97)00011-0
pmid: 9219976
5
PGPopovich, Z Guan, VMcGaughy, LFisher, WFHickey, DMBasso. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002; 61(7): 623–633 https://doi.org/10.1093/jnen/61.7.623
pmid: 12125741
6
JCFleming, MD Norenberg, DARamsay, GADekaban, AEMarcillo, ADSaenz, MPasquale-Styles, WDDietrich, LCWeaver. The cellular inflammatory response in human spinal cords after injury. Brain 2006; 129(Pt 12): 3249–3269 https://doi.org/10.1093/brain/awl296
pmid: 17071951
TBJones, RP Hart, PGPopovich. Molecular control of physiological and pathological T-cell recruitment after mouse spinal cord injury. J Neurosci 2005; 25(28): 6576–6583 https://doi.org/10.1523/JNEUROSCI.0305-05.2005
pmid: 16014718
LBauchet, N Lonjon, FEPerrin, CGilbert, APrivat, CFattal. Strategies for spinal cord repair after injury: a review of the literature and information. Ann Phys Rehabil Med 2009; 52(4): 330–351 https://doi.org/10.1016/j.annrmp.2008.10.004
pmid: 19886026
JSilver, ME Schwab, PGPopovich. Central nervous system regenerative failure: role of oligodendrocytes, astrocytes, and microglia. Cold Spring Harb Perspect Biol 2015; 7(3): a020602 https://doi.org/10.1101/cshperspect.a020602
pmid: 25475091
MGrumet, A Flaccus, RUMargolis. Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol 1993; 120(3): 815–824 https://doi.org/10.1083/jcb.120.3.815
pmid: 8425902
16
MTFitch, C Doller, CKCombs, GELandreth, JSilver. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999; 19(19): 8182–8198 https://doi.org/10.1523/JNEUROSCI.19-19-08182.1999
pmid: 10493720
17
DMSnow, V Lemmon, DACarrino, AICaplan, JSilver. Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 1990; 109(1): 111–130 https://doi.org/10.1016/S0014-4886(05)80013-5
pmid: 2141574
18
RJMcKeon, A Höke, JSilver. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 1995; 136(1): 32–43 https://doi.org/10.1006/exnr.1995.1081
pmid: 7589332
19
KERhodes, G Raivich, JWFawcett. The injury response of oligodendrocyte precursor cells is induced by platelets, macrophages and inflammation-associated cytokines. Neuroscience 2006; 140(1): 87–100 https://doi.org/10.1016/j.neuroscience.2006.01.055
pmid: 16631314
BShrestha, K Coykendall, YLi, AMoon, P Priyadarshani, LYao. Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem Cell Res Ther 2014; 5(4): 91 https://doi.org/10.1186/scrt480
pmid: 25157690
24
EAJJoosten, PR Bär, WHGispen. Collagen implants and cortico-spinal axonal growth after mid-thoracic spinal cord lesion in the adult rat. J Neurosci Res 1995; 41(4): 481–490 https://doi.org/10.1002/jnr.490410407
pmid: 7473879
25
QHan, W Jin, ZXiao, HNi, J Wang, JKong, JWu, W Liang, LChen, YZhao, B Chen, JDai. The promotion of neural regeneration in an extreme rat spinal cord injury model using a collagen scaffold containing a collagen binding neuroprotective protein and an EGFR neutralizing antibody. Biomaterials 2010; 31(35): 9212–9220 https://doi.org/10.1016/j.biomaterials.2010.08.040
pmid: 20869112
26
TLiu, JD Houle, JXu, BPChan, SYChew. Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng Part A 2012; 18(9-10): 1057–1066 https://doi.org/10.1089/ten.tea.2011.0430
pmid: 22220714
27
SHan, B Wang, WJin, ZXiao, X Li, WDing, MKapur, BChen, B Yuan, TZhu, HWang, J Wang, QDong, WLiang, JDai. The linear-ordered collagen scaffold-BDNF complex significantly promotes functional recovery after completely transected spinal cord injury in canine. Biomaterials 2015; 41: 89–96 https://doi.org/10.1016/j.biomaterials.2014.11.031
pmid: 25522968
28
MHSpilker, IV Yannas, SKKostyk, TVNorregaard, HPHsu, M Spector. The effects of tubulation on healing and scar formation after transection of the adult rat spinal cord. Restor Neurol Neurosci 2001; 18(1): 23–38
pmid: 11673667
29
GLewandowski, O Steward. AAV shRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 2014; 34(30): 9951–9962 https://doi.org/10.1523/JNEUROSCI.1996-14.2014
pmid: 25057197
30
PLu, Y Wang, LGraham, KMcHale, MGao, D Wu, JBrock, ABlesch, ESRosenzweig, LAHavton, BZheng, JMConner, MMarsala, MHTuszynski. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell 2012; 150(6): 1264–1273 https://doi.org/10.1016/j.cell.2012.08.020
pmid: 22980985
31
PLu, G Woodruff, YWang, LGraham, MHunt, D Wu, EBoehle, RAhmad, GPoplawski, JBrock, LSGoldstein, MHTuszynski. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014; 83(4): 789–796 https://doi.org/10.1016/j.neuron.2014.07.014
pmid: 25123310
ZYang, A Zhang, HDuan, SZhang, PHao, K Ye, YESun, XLi. NT3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 2015; 112(43): 13354–13359 https://doi.org/10.1073/pnas.1510194112
pmid: 26460015
35
HDuan, W Ge, AZhang, YXi, Z Chen, DLuo, YCheng, KSFan, S Horvath, MVSofroniew, LCheng, ZYang, YE Sun, XLi. Transcriptome analyses reveal molecular mechanisms underlying functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 2015; 112(43): 13360–13365 https://doi.org/10.1073/pnas.1510176112
pmid: 26460053
36
SStokols, J Sakamoto, CBreckon, THolt, J Weiss, MHTuszynski. Templated agarose scaffolds support linear axonal regeneration. Tissue Eng 2006; 12(10): 2777–2787 https://doi.org/10.1089/ten.2006.12.2777
pmid: 17518647
37
TGros, JS Sakamoto, ABlesch, LAHavton, MHTuszynski. Regeneration of long-tract axons through sites of spinal cord injury using templated agarose scaffolds. Biomaterials 2010; 31(26): 6719–6729 https://doi.org/10.1016/j.biomaterials.2010.04.035
pmid: 20619785
38
MGao, P Lu, BBednark, DLynam, JMConner, JSakamoto, MHTuszynski. Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials 2013; 34(5): 1529–1536 https://doi.org/10.1016/j.biomaterials.2012.10.070
pmid: 23182350
39
JKLee, AF Chan, SMLuu, YZhu, C Ho, MTessier-Lavigne, BZheng. Reassessment of corticospinal tract regeneration in Nogo-deficient mice. J Neurosci 2009; 29(27): 8649–8654 https://doi.org/10.1523/JNEUROSCI.1864-09.2009
pmid: 19587271
40
JKLee, CG Geoffroy, AFChan, KETolentino, MJCrawford, MALeal, BKang, B Zheng. Assessing spinal axon regeneration and sprouting in Nogo-, MAG-, and OMgp-deficient mice. Neuron 2010; 66(5): 663–670 https://doi.org/10.1016/j.neuron.2010.05.002
pmid: 20547125
41
JLGoldberg, MP Klassen, YHua, BABarres. Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 2002; 296(5574): 1860–1864 https://doi.org/10.1126/science.1068428
pmid: 12052959
42
DCai, J Qiu, ZCao, MMcAtee, BSBregman, MTFilbin. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci 2001; 21(13): 4731–4739 https://doi.org/10.1523/JNEUROSCI.21-13-04731.2001
pmid: 11425900
43
YHao, E Frey, CYoon, HWong, D Nestorovski, LBHolzman, RJGiger, ADiAntonio, CCollins. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK. eLife 2016; 5: e14048 https://doi.org/DOI: 10.7554/eLife.14048
pmid: 27268300
MGBlackmore, Z Wang, JKLerch, DMotti, YPZhang, CBShields, JKLee, JL Goldberg, VPLemmon, JLBixby. Krüppel-like Factor 7 engineered for transcriptional activation promotes axon regeneration in the adult corticospinal tract. Proc Natl Acad Sci U S A 2012; 109(19): 7517–7522 https://doi.org/10.1073/pnas.1120684109
pmid: 22529377
46
MWNorsworthy, F Bei, RKawaguchi, QWang, NM Tran, YLi, BBrommer, YZhang, CWang, JR Sanes, GCoppola, ZHe. Sox11 expression promotes regeneration of some retinal ganglion cell types but kills others. Neuron 2017; 94(6): 1112–1120.e4 https://doi.org/10.1016/j.neuron.2017.05.035
pmid: 28641110
47
KKPark, K Liu, YHu, PDSmith, CWang, B Cai, BXu, LConnolly, IKramvis, MSahin, ZHe. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008; 322(5903): 963–966 https://doi.org/10.1126/science.1161566
pmid: 18988856
48
SBelin, H Nawabi, CWang, STang, A Latremoliere, PWarren, HSchorle, CUncu, CJ Woolf, ZHe, JASteen. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics. Neuron 2015; 86(4): 1000–1014 https://doi.org/10.1016/j.neuron.2015.03.060
pmid: 25937169
49
KLiu, Y Lu, JKLee, RSamara, RWillenberg, ISears-Kraxberger, ATedeschi, KKPark, DJin, B Cai, BXu, LConnolly, OSteward, BZheng, ZHe. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010; 13(9): 1075–1081 https://doi.org/10.1038/nn.2603
pmid: 20694004
50
MSSong, L Salmena, PPPandolfi. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 2012; 13(5): 283–296 https://doi.org/10.1038/nrm3330
pmid: 22473468
51
FSun, KK Park, SBelin, DWang, T Lu, GChen, KZhang, CYeung, GFeng, BA Yankner, ZHe. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 2011; 480(7377): 372–375 https://doi.org/10.1038/nature10594
pmid: 22056987
52
XDuan, M Qiao, FBei, IJKim, Z He, JRSanes. Subtype-specific regeneration of retinal ganglion cells following axotomy: effects of osteopontin and mTOR signaling. Neuron 2015; 85(6): 1244–1256 https://doi.org/10.1016/j.neuron.2015.02.017
pmid: 25754821
53
YLiu, X Wang, WLi, QZhang, YLi, Z Zhang, JZhu, BChen, PR Williams, YZhang, BYu, X Gu, ZHe. A sensitized IGF1 treatment restores corticospinal axon-dependent functions. Neuron 2017; 95(4): 817–833.e4 https://doi.org/10.1016/j.neuron.2017.07.037
pmid: 28817801
54
FBei, HHC Lee, XLiu, GGunner, HJin, L Ma, CWang, LHou, TK Hensch, EFrank, JRSanes, CChen, M Fagiolini, ZHe. Restoration of visual function by enhancing conduction in regenerated axons. Cell 2016; 164(1-2): 219–232 https://doi.org/10.1016/j.cell.2015.11.036
pmid: 26771493
55
PLu, G Woodruff, YWang, LGraham, MHunt, D Wu, EBoehle, RAhmad, GPoplawski, JBrock, LSBGoldstein, MHTuszynski. Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 2014; 83(4): 789–796 https://doi.org/10.1016/j.neuron.2014.07.014
pmid: 25123310