PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives
Yumeng Wang1, Guiling Li1,2()
1. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011,China 2. Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
Cervical cancer (CC) is the fourth most commonly diagnosed female malignancy and a leading cause of cancer-related mortality worldwide, especially in developing countries. Despite the use of advanced screening and preventive vaccines, more than half of all CC cases are diagnosed at advanced stages, when therapeutic options are extremely limited and side effects are severe. Given these circumstances, new and effective treatments are needed. In recent years, exciting progress has been made in immunotherapies, including the rapid development of immune checkpoint inhibitors. Checkpoint blockades targeting the PD-1/PD-L1 axis have achieved effective clinical responses with acceptable toxicity by suppressing tumor progression and improving survival in several tumor types. In this review, we summarize recent advances in our understanding of the PD-1/PD-L1 signaling pathway, including the expression patterns of PD-1/PD-L1 and potential PD-1/PD-L1-related therapeutic strategies for CC.
*NCT02257528: treating persistent, recurrent, and metastatic CC
Phase II
*NCT02465060: treating patients with mismatch repair deficiency (loss of MLH1 or MSH2 by IHC) in advanced refractory solid tumors
Phase II
*NCT02379520: HPVST cells alone or in combination with nivolumab in HPV-related carcinoma
Phase I
*NCT03126110:INCAGN01876+ nivolumab or/and ipilimumab treating advanced or metastatic malignancies
Phase I/II
*NCT03241173:INCAGN01949+ nivolumab or/and ipilimumab treating advanced or metastatic malignancies
Phase I/II
*NCT03298893: in combination with radiotherapy and cisplatin in locally advanced CC
Phase I
*NCT02628064: treating advanced solid tumors including CC
Phase II
Pembrolizumab (MK3475, Keytruda®)
*NCT02628067: treating advanced solid tumors including CC
Phase II
*NCT02635360: in combination with chemoradiation for the treatment of advanced CC
Phase II
*NCT03144466: in combination with radiotherapy and cisplatin treating advanced CC
Phase I
*NCT03192059: in combination with radiation and an immune modulatory cocktail treating advanced and/refractory CC endometrial carcinoma or uterine sarcoma
Phase II
*NCT02858310: TCR gene therapy targeting HPV-16 E7 with or without pembrolizumab for HPV-associated cancers
Phase I
*NCT03444376: in combination of GX-188E vaccination treating advanced, nonresectable HPV16 and/or 18+ CC
Phase Ib-II
*NCT03635567: in combination with chemotherapy treating persistent, recurrent, or metastatic CC
Phase III
*NCT03367871: in combination with chemotherapy and bevacizumab treating CC
Phase II
PD-L1
Atezolizumab (MDPL-3280A, Tecentrip®)
*NCT02921269: in combination with bevacizumab treating recurrent, persistent, or metastatic CC
Phase II
*NCT03074513: in combination with bevacizumab treating rare solid tumors including CC
Phase II
*NCT03073525: in combination with Vigil treating advanced gynecological cancers
Phase II
*NCT02914470: in combination with carboplatin-cyclophosphamide treating advanced breast cancer and gynecologic cancer
Phase I
*NCT03614949: in combination with stereotactic body radiation therapy treating recurrent, persistent, or metastatic CC
Phase II
*NCT03340376: in combination with doxorubicin treating recurrent CC
Phase II
Avelumab (MSB0010718C, BAVENCIO®)
*NCT03260023: in combination with TG4001 treating HPV-16+ recurrent or metastatic malignancies
Phase I/II
*NCT03217747: in combination with or without radiation, or radiation and cisplatin treating limited, locally advanced or metastatic solid tumors including CC
Phase I/II
Durvalumab (MEDI4736)
*NCT01975831: in combination with tremelimumab treating advanced solid tumors
Phase I
*NCT02725489:in combination with Vigil and durvalumab treating advanced women's cancers
Phase II
*NCT02291055: in combination with ADXS11-001 in previously treated locally advanced or metastatic cervical or HPV+ head and neck cancer
Phase I/II
*NCT03452332: in combination with stereotactic ablative radiotherapy and tremelimumab treating cervical, vaginal, or vulvar cancer
L Chen, DB Flies. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13(4): 227–242 https://doi.org/10.1038/nri3405
pmid: 23470321
Y Ishida, Y Agata, K Shibahara, T Honjo. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11(11): 3887–3895 https://doi.org/10.1002/j.1460-2075.1992.tb05481.x
pmid: 1396582
7
Y Agata, A Kawasaki, H Nishimura, Y Ishida, T Tsubata, H Yagita, T Honjo. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8(5): 765–772 https://doi.org/10.1093/intimm/8.5.765
pmid: 8671665
BT Fife, KE Pauken, TN Eagar, T Obu, J Wu, Q Tang, M Azuma, MF Krummel, JA Bluestone. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10(11): 1185–1192 https://doi.org/10.1038/ni.1790
pmid: 19783989
M Ghiotto, L Gauthier, N Serriari, S Pastor, A Truneh, JA Nunès, D Olive. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol 2010; 22(8): 651–660 https://doi.org/10.1093/intimm/dxq049
pmid: 20587542
12
X Wang, F Teng, L Kong, J Yu. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 2016; 9: 5023–5039 https://doi.org/10.2147/OTT.S105862
pmid: 27574444
13
F Tsushima, S Yao, T Shin, A Flies, S Flies, H Xu, K Tamada, DM Pardoll, L Chen. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 2007; 110(1): 180–185 https://doi.org/10.1182/blood-2006-11-060087
pmid: 17289811
14
H Dong, G Zhu, K Tamada, L Chen. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5(12): 1365–1369 https://doi.org/10.1038/70932
pmid: 10581077
15
H Dong, SE Strome, DR Salomao, H Tamura, F Hirano, DB Flies, PC Roche, J Lu, G Zhu, K Tamada, VA Lennon, E Celis, L Chen. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8(8): 793–800 https://doi.org/10.1038/nm730
pmid: 12091876
16
DL Barber, EJ Wherry, D Masopust, B Zhu, JP Allison, AH Sharpe, GJ Freeman, R Ahmed. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439(7077): 682–687 https://doi.org/10.1038/nature04444
pmid: 16382236
17
S Amarnath, CW Mangus, JC Wang, F Wei, A He, V Kapoor, JE Foley, PR Massey, TC Felizardo, JL Riley, BL Levine, CH June, JA Medin, DH Fowler. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2011; 3(111): 111ra120 https://doi.org/10.1126/scitranslmed.3003130
pmid: 22133721
P Sharma, MK Callahan, P Bono, J Kim, P Spiliopoulou, E Calvo, RN Pillai, PA Ott, F de Braud, M Morse, DT Le, D Jaeger, E Chan, C Harbison, CS Lin, M Tschaika, A Azrilevich, JE Rosenberg. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 2016; 17(11): 1590–1598 https://doi.org/10.1016/S1470-2045(16)30496-X
pmid: 27733243
21
C Robert, GV Long, B Brady, C Dutriaux, M Maio, L Mortier, JC Hassel, P Rutkowski, C McNeil, E Kalinka-Warzocha, KJ Savage, MM Hernberg, C Lebbé, J Charles, C Mihalcioiu, V Chiarion-Sileni, C Mauch, F Cognetti, A Arance, H Schmidt, D Schadendorf, H Gogas, L Lundgren-Eriksson, C Horak, B Sharkey, IM Waxman, V Atkinson, PA Ascierto. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372(4): 320–330 https://doi.org/10.1056/NEJMoa1412082
pmid: 25399552
22
CJ Langer, SM Gadgeel, H Borghaei, VA Papadimitrakopoulou, A Patnaik, SF Powell, RD Gentzler, RG Martins, JP Stevenson, SI Jalal, A Panwalkar, JC Yang, M Gubens, LV Sequist, MM Awad, J Fiore, Y Ge, H Raftopoulos, L; KEYNOTE-021 investigators. GandhiCarboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016; 17(11): 1497–1508 https://doi.org/10.1016/S1470-2045(16)30498-3
pmid: 27745820
23
LA Torre, F Bray, RL Siegel, J Ferlay, J Lortet-Tieulent, A Jemal. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87–108 https://doi.org/10.3322/caac.21262
pmid: 25651787
24
LA Torre, RL Siegel, EM Ward, A Jemal. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16–27 https://doi.org/10.1158/1055-9965.EPI-15-0578
pmid: 26667886
D Cibula, NR Abu-Rustum, P Benedetti-Panici, C Köhler, F Raspagliesi, D Querleu, CP Morrow. New classification system of radical hysterectomy: emphasis on a three-dimensional anatomic template for parametrial resection. Gynecol Oncol 2011; 122(2): 264–268 https://doi.org/10.1016/j.ygyno.2011.04.029
pmid: 21592548
27
PG Rose. Concurrent chemoradiation for locally advanced carcinoma of the cervix: where are we in 2006? Ann Oncol 2006; 17(Suppl 10): x224–x229 https://doi.org/10.1093/annonc/mdl264
pmid: 17018728
28
RN Eskander, KS Tewari. Chemotherapy in the treatment of metastatic, persistent, and recurrent cervical cancer. Curr Opin Obstet Gynecol 2014; 26(4): 314–321 https://doi.org/10.1097/GCO.0000000000000042
pmid: 24979076
29
W Ma, BM Gilligan, J Yuan, T Li. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 2016; 9(1): 47 https://doi.org/10.1186/s13045-016-0277-y
pmid: 27234522
30
W Zou, JD Wolchok, L Chen. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8(328): 328rv4 https://doi.org/10.1126/scitranslmed.aad7118
pmid: 26936508
31
J Hamanishi, M Mandai, N Matsumura, K Abiko, T Baba, I Konishi. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol 2016; 21(3): 462–473 https://doi.org/10.1007/s10147-016-0959-z
pmid: 26899259
32
Z Chen, N Pang, R Du, Y Zhu, L Fan, D Cai, Y Ding, J Ding. Elevated expression of programmed death-1 and programmed death ligand-1 negatively regulates immune response against cervical cancer cells. Mediators Inflamm 2016; 2016: 6891482 https://doi.org/10.1155/2016/6891482
pmid: 27721577
33
EK Enwere, EN Kornaga, M Dean, TA Koulis, T Phan, M Kalantarian, M Köbel, P Ghatage, AM Magliocco, SP Lees-Miller, CM Doll. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol 2017; 30(4): 577–586 https://doi.org/10.1038/modpathol.2016.221
pmid: 28059093
34
AM Heeren, BD Koster, S Samuels, DM Ferns, D Chondronasiou, GG Kenter, ES Jordanova, TD de Gruijl. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res 2015; 3(1): 48–58 https://doi.org/10.1158/2326-6066.CIR-14-0149
pmid: 25361854
35
AM Heeren, S Punt, MC Bleeker, KN Gaarenstroom, J van der Velden, GG Kenter, TD de Gruijl, ES Jordanova. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod Pathol 2016; 29(7): 753–763 https://doi.org/10.1038/modpathol.2016.64
pmid: 27056074
36
BE Howitt, HH Sun, MGM Roemer, A Kelley, B Chapuy, E Aviki, C Pak, C Connelly, E Gjini, Y Shi, L Lee, A Viswanathan, N Horowitz, D Neuberg, CP Crum, NL Lindeman, F Kuo, AH Ligon, GJ Freeman, FS Hodi, MA Shipp, SJ Rodig. Genetic basis for PD-L1 Expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol 2016; 2(4): 518–522 https://doi.org/10.1001/jamaoncol.2015.6326
pmid: 26913631
37
R Karim, ES Jordanova, SJ Piersma, GG Kenter, L Chen, JM Boer, CJM Melief, SH van der Burg. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 2009; 15(20): 6341–6347 https://doi.org/10.1158/1078-0432.CCR-09-1652
pmid: 19825956
38
C Liu, J Lu, H Tian, W Du, L Zhao, J Feng, D Yuan, Z Li. Increased expression of PDL1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol Med Rep 2017; 15(3): 1063–1070 https://doi.org/10.3892/mmr.2017.6102
pmid: 28075442
39
L Mezache, B Paniccia, A Nyinawabera, GJ Nuovo. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol 2015; 28(12): 1594–1602 https://doi.org/10.1038/modpathol.2015.108
pmid: 26403783
40
OL Reddy, PI Shintaku, NA Moatamed. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn Pathol 2017; 12(1): 45 https://doi.org/10.1186/s13000-017-0631-6
pmid: 28623908
41
DT Rieke, S Ochsenreither, K Klinghammer, TY Seiwert, F Klauschen, I Tinhofer, U Keilholz. Methylation of RAD51B, XRCC3 and other homologous recombination genes is associated with expression of immune checkpoints and an inflammatory signature in squamous cell carcinoma of the head and neck, lung and cervix. Oncotarget 2016; 7(46): 75379–75393 https://doi.org/10.18632/oncotarget.12211
pmid: 27683114
42
KL Ring, AV Yemelyanova, PT Soliman, MM Frumovitz, AA Jazaeri. Potential immunotherapy targets in recurrent cervical cancer. Gynecol Oncol 2017; 145(3): 462–468 https://doi.org/10.1016/j.ygyno.2017.02.027
pmid: 28233576
43
W Yang, Y Song, YL Lu, JZ Sun, HW Wang. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013; 139(4):513–522 PMID: 23521696 https://doi.org/10.1111/imm.12101
44
H Chang, JH Hong, JK Lee, HW Cho, YT Ouh, KJ Min, KA So. Programmed death-1 (PD-1) expression in cervical intraepithelial neoplasia and its relationship with recurrence after conization. J Gynecol Oncol 2018; 29(3): e27 https://doi.org/10.3802/jgo.2018.29.e27
pmid: 29400020
45
K Kataoka, Y Shiraishi, Y Takeda, S Sakata, M Matsumoto, S Nagano, T Maeda, Y Nagata, A Kitanaka, S Mizuno, H Tanaka, K Chiba, S Ito, Y Watatani, N Kakiuchi, H Suzuki, T Yoshizato, K Yoshida, M Sanada, H Itonaga, Y Imaizumi, Y Totoki, W Munakata, H Nakamura, N Hama, K Shide, Y Kubuki, T Hidaka, T Kameda, K Masuda, N Minato, K Kashiwase, K Izutsu, A Takaori-Kondo, Y Miyazaki, S Takahashi, T Shibata, H Kawamoto, Y Akatsuka, K Shimoda, K Takeuchi, T Seya, S Miyano, S Ogawa. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 2016; 534(7607): 402–406 https://doi.org/10.1038/nature18294
pmid: 27281199
46
Y Meng, H Liang, J Hu, S Liu, X Hao, MSK Wong, X Li, L Hu. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer 2018; 9(16): 2938–2945 https://doi.org/10.7150/jca.22532
pmid: 30123362
47
W Yang, YP Lu, YZ Yang, JR Kang, YD Jin, HW Wang. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J Obstet Gynaecol Res 2017; 43(10): 1602–1612 https://doi.org/10.1111/jog.13411
pmid: 28833798
48
F Yang-Chun, C Zhen-Zhen, H Yan-Chun, M Xiu-Min. Association between PD-L1 and HPV status and the prognostic value for HPV treatment in premalignant cervical lesion patients. Medicine (Baltimore) 2017; 96(25): e7270 https://doi.org/10.1097/MD.0000000000007270
pmid: 28640134
49
S Gandini, D Massi, M Mandalà. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2016; 100: 88–98 https://doi.org/10.1016/j.critrevonc.2016.02.001
pmid: 26895815
50
KM Kerr, MS Tsao, AG Nicholson, Y Yatabe, II Wistuba, , FR Hirsch; IASLC Pathology Committee. Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol 2015; 10(7): 985–989 PMID: 26134220 https://doi.org/10.1097/JTO.0000000000000526
EB Garon, NA Rizvi, R Hui, N Leighl, AS Balmanoukian, JP Eder, A Patnaik, C Aggarwal, M Gubens, L Horn, E Carcereny, MJ Ahn, E Felip, JS Lee, MD Hellmann, O Hamid, JW Goldman, JC Soria, M Dolled-Filhart, RZ Rutledge, J Zhang, JK Lunceford, R Rangwala, GM Lubiniecki, C Roach, K Emancipator, L Gandhi; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018–2028 https://doi.org/10.1056/NEJMoa1501824
pmid: 25891174
53
RS Herbst, JC Soria, M Kowanetz, GD Fine, O Hamid, MS Gordon, JA Sosman, DF McDermott, JD Powderly, SN Gettinger, HE Kohrt, L Horn, DP Lawrence, S Rost, M Leabman, Y Xiao, A Mokatrin, H Koeppen, PS Hegde, I Mellman, DS Chen, FS Hodi. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014; 515(7528): 563–567 https://doi.org/10.1038/nature14011
pmid: 25428504
54
T Powles, JP Eder, GD Fine, FS Braiteh, Y Loriot, C Cruz, J Bellmunt, HA Burris, DP Petrylak, SL Teng, X Shen, Z Boyd, PS Hegde, DS Chen, NJ Vogelzang. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 515(7528): 558–562 https://doi.org/10.1038/nature13904
pmid: 25428503
55
SL Topalian, FS Hodi, JR Brahmer, SN Gettinger, DC Smith, DF McDermott, JD Powderly, RD Carvajal, JA Sosman, MB Atkins, PD Leming, DR Spigel, SJ Antonia, L Horn, CG Drake, DM Pardoll, L Chen, WH Sharfman, RA Anders, JM Taube, TL McMiller, H Xu, AJ Korman, M Jure-Kunkel, S Agrawal, D McDonald, GD Kollia, A Gupta, JM Wigginton, M Sznol. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454 https://doi.org/10.1056/NEJMoa1200690
pmid: 22658127
56
V Catenacci Daniel, Z Wainberg, S Fuchs Charles, M Garrido, YJ Bang, K Muro, M Savage, J Wang, M Koshiji, P Dalal Rita, YK Kang. LBA-009KEYNOTE-059 cohort 3: safety and efficacy of pembrolizumab monotherapy for first-line treatment of patients (pts) with PD-L1-positive advanced gastric/gastroesophageal (G/GEJ) cancer. Ann Oncol 2017; 28(suppl 3): mdx302.008 PMID:30052791 https://doi.org/DOI:10.1093/annonc/mdx302.008
57
Y Zhang, S Kang, J Shen, J He, L Jiang, W Wang, Z Guo, G Peng, G Chen, J He, W Liang. Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) expression in epithelial-originated cancer: a meta-analysis. Medicine (Baltimore) 2015; 94(6): e515 https://doi.org/10.1097/MD.0000000000000515
pmid: 25674748
58
Y Jin, J Zhao, X Shi, X Yu. Prognostic value of programed death ligand 1 in patients with solid tumors: a meta-analysis. J Cancer Res Ther 2015; 11(5 Suppl 1): C38–C43 https://doi.org/10.4103/0973-1482.163837
pmid: 26323922
59
C Badoual, S Hans, N Merillon, C Van Ryswick, P Ravel, N Benhamouda, E Levionnois, M Nizard, A Si-Mohamed, N Besnier, A Gey, R Rotem-Yehudar, H Pere, T Tran, CL Guerin, A Chauvat, E Dransart, C Alanio, S Albert, B Barry, F Sandoval, F Quintin-Colonna, P Bruneval, WH Fridman, FM Lemoine, S Oudard, L Johannes, D Olive, D Brasnu, E Tartour. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73(1): 128–138 https://doi.org/10.1158/0008-5472.CAN-12-2606
pmid: 23135914
60
AI Daud, K Loo, ML Pauli, R Sanchez-Rodriguez, PM Sandoval, K Taravati, K Tsai, A Nosrati, L Nardo, MD Alvarado, AP Algazi, MH Pampaloni, IV Lobach, J Hwang, RH Pierce, IK Gratz, MF Krummel, MD Rosenblum. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest 2016; 126(9): 3447–3452 https://doi.org/10.1172/JCI87324
pmid: 27525433
61
D Song, H Li, H Li, J Dai. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett 2015; 10(2): 600–606 https://doi.org/10.3892/ol.2015.3295
pmid: 26622540
62
P Conesa-Zamora. Immune responses against virus and tumor in cervical carcinogenesis: treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol 2013; 131(2): 480–488 https://doi.org/10.1016/j.ygyno.2013.08.025
pmid: 23994536
DT Le, JN Uram, H Wang, BR Bartlett, H Kemberling, AD Eyring, AD Skora, BS Luber, NS Azad, D Laheru, B Biedrzycki, RC Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, SM Duffy, RM Goldberg, A de la Chapelle, M Koshiji, F Bhaijee, T Huebner, RH Hruban, LD Wood, N Cuka, DM Pardoll, N Papadopoulos, KW Kinzler, S Zhou, TC Cornish, JM Taube, RA Anders, JR Eshleman, B Vogelstein, LA Diaz Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520 https://doi.org/10.1056/NEJMoa1500596
pmid: 26028255
65
W Roh, PL Chen, A Reuben, CN Spencer, PA Prieto, JP Miller, V Gopalakrishnan, F Wang, ZA Cooper, SM Reddy, C Gumbs, L Little, Q Chang, WS Chen, K Wani, MP De Macedo, E Chen, JL Austin-Breneman, H Jiang, J Roszik, MT Tetzlaff, MA Davies, JE Gershenwald, H Tawbi, AJ Lazar, P Hwu, WJ Hwu, A Diab, IC Glitza, SP Patel, SE Woodman, RN Amaria, VG Prieto, J Hu, P Sharma, JP Allison, L Chin, J Zhang, JA Wargo, PA Futreal. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 2017; 9(379): eaah3560 https://doi.org/10.1126/scitranslmed.aah3560
pmid: 28251903
66
H zur Hausen. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2(5): 342–350 https://doi.org/10.1038/nrc798
pmid: 12044010
67
FX Bosch, A Lorincz, N Muñoz, CJ Meijer, KV Shah. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55(4): 244–265 https://doi.org/10.1136/jcp.55.4.244
pmid: 11919208
68
N Egawa, K Egawa, H Griffin, J Doorbar. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 2015; 7(7): 3863–3890 https://doi.org/10.3390/v7072802
pmid: 26193301
J Doorbar, N Egawa, H Griffin, C Kranjec, I Murakami. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25(Suppl 1): 2–23 https://doi.org/10.1002/rmv.1822
pmid: 25752814
M Narisawa-Saito, T Kiyono. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007; 98(10): 1505–1511 https://doi.org/10.1111/j.1349-7006.2007.00546.x
pmid: 17645777
73
RC Kines, CD Thompson, DR Lowy, JT Schiller, PM Day. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 2009; 106(48): 20458–20463 https://doi.org/10.1073/pnas.0908502106
pmid: 19920181
74
SF Jabbar, L Abrams, A Glick, PF Lambert. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 2009; 69(10): 4407–4414 https://doi.org/10.1158/0008-5472.CAN-09-0023
pmid: 19435895
75
H Romanczuk, PM Howley. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci USA 1992; 89(7): 3159–3163 https://doi.org/10.1073/pnas.89.7.3159
pmid: 1313584
76
CP Crum, G Nuovo, D Friedman, SJ Silverstein. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. J Virol 1988; 62(1): 84–90
pmid: 2824859
77
AJ van den Brule, FV Cromme, PJ Snijders, L Smit, CB Oudejans, JP Baak, CJ Meijer, JM Walboomers. Nonradioactive RNA in situ hybridization detection of human papillomavirus 16-E7 transcripts in squamous cell carcinomas of the uterine cervix using confocal laser scan microscopy. Am J Pathol 1991; 139(5): 1037–1045
pmid: 1719818
78
S Krishna, P Ulrich, E Wilson, F Parikh, P Narang, S Yang, AK Read, S Kim-Schulze, JG Park, M Posner, MA Wilson Sayres, A Sikora, KS Anderson. Human papilloma virus specific immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res 2018; 78(21): 6159–6170 https://doi.org/10.1158/0008-5472.CAN-18-0163
pmid: 30154146
RL Ferris, G Blumenschein Jr, J Fayette, J Guigay, AD Colevas, L Licitra, K Harrington, S Kasper, EE Vokes, C Even, F Worden, NF Saba, LC Iglesias Docampo, R Haddad, T Rordorf, N Kiyota, M Tahara, M Monga, M Lynch, WJ Geese, J Kopit, JW Shaw, ML Gillison. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19): 1856–1867 https://doi.org/10.1056/NEJMoa1602252
pmid: 27718784
81
Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada's Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center &Research Institute at Christiana Care Health Services; HudsonAlpha Institute for Biotechnology; ILSbio, LLC; Indiana University School of Medicine; Institute of Human Virology; Institute for Systems Biology; International Genomics Consortium; Leidos Biomedical; Massachusetts General Hospital; McDonnell Genome Institute at Washington University; Medical College of Wisconsin; Medical University of South Carolina; Memorial Sloan Kettering Cancer Center; Montefiore Medical Center; NantOmics; National Cancer Institute; National Hospital, Abuja, Nigeria; National Human Genome Research Institute; National Institute of Environmental Health Sciences; National Institute on Deafness &Other Communication Disorders; Ontario Tumour Bank, London Health Sciences Centre; Ontario Tumour Bank, Ontario Institute for Cancer Research; Ontario Tumour Bank, The Ottawa Hospital; Oregon Health &Science University; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; SRA International; St Joseph's Candler Health System; Eli &Edythe L. Broad Institute of Massachusetts Institute of Technology &Harvard University; Research Institute at Nationwide Children's Hospital; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University; University of Bergen; University of Texas MD Anderson Cancer Center; University of Abuja Teaching Hospital; University of Alabama at Birmingham; University of California, Irvine; University of California Santa Cruz; University of Kansas Medical Center; University of Lausanne; University of New Mexico Health Sciences Center; University of North Carolina at Chapel Hill; University of Oklahoma Health Sciences Center; University of Pittsburgh; University of São Paulo, Ribeir ão Preto Medical School; University of Southern California; University of Washington; University of Wisconsin School of Medicine &Public Health; Van Andel Research Institute; Washington University in St Louis.. Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543(7645): 378–384 PMID: 28112728 https://doi.org/DOI: 10.1038/nature21386
82
JR Brahmer, CG Drake, I Wollner, JD Powderly, J Picus, WH Sharfman, E Stankevich, A Pons, TM Salay, TL McMiller, MM Gilson, C Wang, M Selby, JM Taube, R Anders, L Chen, AJ Korman, DM Pardoll, I Lowy, SL Topalian. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 28(19): 3167–3175 https://doi.org/10.1200/JCO.2009.26.7609
pmid: 20516446
83
H Borghaei, L Paz-Ares, L Horn, DR Spigel, M Steins, NE Ready, LQ Chow, EE Vokes, E Felip, E Holgado, F Barlesi, M Kohlhäufl, O Arrieta, MA Burgio, J Fayette, H Lena, E Poddubskaya, DE Gerber, SN Gettinger, CM Rudin, N Rizvi, L Crinò, GR Blumenschein Jr, SJ Antonia, C Dorange, CT Harbison, F Graf Finckenstein, JR Brahmer. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373(17): 1627–1639 https://doi.org/10.1056/NEJMoa1507643
pmid: 26412456
84
FS Hodi, J Chesney, AC Pavlick, C Robert, KF Grossmann, DF McDermott, GP Linette, N Meyer, JK Giguere, SS Agarwala, M Shaheen, MS Ernstoff, DR Minor, AK Salama, MH Taylor, PA Ott, C Horak, P Gagnier, J Jiang, JD Wolchok, MA Postow. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016; 17(11): 1558–1568 https://doi.org/10.1016/S1470-2045(16)30366-7
pmid: 27622997
85
YL Kasamon, RA de Claro, Y Wang, YL Shen, AT Farrell, R Pazdur. FDA approval summary: nivolumab for the treatment of relapsed or progressive classical Hodgkin lymphoma. Oncologist 2017; 22(5): 585–591 https://doi.org/10.1634/theoncologist.2017-0004
pmid: 28438889
86
MJ Overman, R McDermott, JL Leach, S Lonardi, HJ Lenz, MA Morse, J Desai, A Hill, M Axelson, RA Moss, MV Goldberg, ZA Cao, JM Ledeine, GA Maglinte, S Kopetz, T André. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18(9): 1182–1191 https://doi.org/10.1016/S1470-2045(17)30422-9
pmid: 28734759
87
H Rexer, CH Ohlmann, J, AUO Gschwend. First line therapy for locally advanced or metastatic urothelial cancer: a randomized double blind phase III multicenter study on adjuvant nivolumab therapy versus placebo in patients with invasive high-risk urothelial cancer (CheckMate 274)-AB 58/17 of the AUO. Urologe A 2017; 56(10): 1331–1332 (in German) https://doi.org/10.1007/s00120-017-0480-7
pmid: 28779222
88
Y Tomita, S Fukasawa, N Shinohara, H Kitamura, M Oya, M Eto, K Tanabe, G Kimura, J Yonese, M Yao, RJ Motzer, H Uemura, MB McHenry, E Berghorn, S Ozono. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup analysis from the CheckMate 025 study. Jpn J Clin Oncol 2017; 47(7): 639–646 https://doi.org/10.1093/jjco/hyx049
pmid: 28419248
89
SB Goldberg, SN Gettinger, A Mahajan, AC Chiang, RS Herbst, M Sznol, AJ Tsiouris, J Cohen, A Vortmeyer, L Jilaveanu, J Yu, U Hegde, S Speaker, M Madura, A Ralabate, A Rivera, E Rowen, H Gerrish, X Yao, V Chiang, HM Kluger. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016; 17(7): 976–983 https://doi.org/10.1016/S1470-2045(16)30053-5
pmid: 27267608
90
FS Hodi, J Chesney, AC Pavlick, C Robert, KF Grossmann, DF McDermott, GP Linette, N Meyer, JK Giguere, SS Agarwala, M Shaheen, MS Ernstoff, DR Minor, AK Salama, MH Taylor, PA Ott, C Horak, P Gagnier, J Jiang, JD Wolchok, MA Postow. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016; 17(11): 1558–1568 https://doi.org/10.1016/S1470-2045(16)30366-7
pmid: 27622997
91
TY Seiwert, B Burtness, R Mehra, J Weiss, R Berger, JP Eder, K Heath, T McClanahan, J Lunceford, C Gause, JD Cheng, LQ Chow. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17(7): 956–965 https://doi.org/10.1016/S1470-2045(16)30066-3
pmid: 27247226
92
J Sul, GM Blumenthal, X Jiang, K He, P Keegan, R Pazdur. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016; 21(5): 643–650 https://doi.org/10.1634/theoncologist.2015-0498
pmid: 27026676
AV Balar, MD Galsky, JE Rosenberg, T Powles, DP Petrylak, J Bellmunt, Y Loriot, A Necchi, J Hoffman-Censits, JL Perez-Gracia, NA Dawson, MS van der Heijden, R Dreicer, S Srinivas, MM Retz, RW Joseph, A Drakaki, UN Vaishampayan, SS Sridhar, DI Quinn, I Durán, DR Shaffer, BJ Eigl, PD Grivas, EY Yu, S Li, EE Kadel 3rd, Z Boyd, R Bourgon, PS Hegde, S Mariathasan, A Thåström, OO Abidoye, GD Fine, DF; IMvigor210 Study Group. BajorinAtezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 2017; 389(10064): 67–76 https://doi.org/10.1016/S0140-6736(16)32455-2
pmid: 27939400
96
A Rittmeyer, F Barlesi, D Waterkamp, K Park, F Ciardiello, J von Pawel, SM Gadgeel, T Hida, DM Kowalski, MC Dols, DL Cortinovis, J Leach, J Polikoff, C Barrios, F Kabbinavar, OA Frontera, F De Marinis, H Turna, JS Lee, M Ballinger, M Kowanetz, P He, DS Chen, A Sandler, DR Gandara; OAK Study Group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017; 389(10066): 255–265 https://doi.org/10.1016/S0140-6736(16)32517-X
pmid: 27979383
97
HL Kaufman, J Russell, O Hamid, S Bhatia, P Terheyden, SP D’Angelo, KC Shih, C Lebbé, GP Linette, M Milella, I Brownell, KD Lewis, JH Lorch, K Chin, L Mahnke, A von Heydebreck, JM Cuillerot, P Nghiem. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016; 17(10): 1374–1385 https://doi.org/10.1016/S1470-2045(16)30364-3
pmid: 27592805
98
AB Apolo, JR Infante, A Balmanoukian, MR Patel, D Wang, K Kelly, AE Mega, CD Britten, A Ravaud, AC Mita, H Safran, TE Stinchcombe, M Srdanov, AB Gelb, M Schlichting, K Chin, JL Gulley. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol 2017; 35(19): 2117–2124 https://doi.org/10.1200/JCO.2016.71.6795
pmid: 28375787
99
C Massard, MS Gordon, S Sharma, S Rafii, ZA Wainberg, J Luke, TJ Curiel, G Colon-Otero, O Hamid, RE Sanborn, PH O’Donnell, A Drakaki, W Tan, JF Kurland, MC Rebelatto, X Jin, JA Blake-Haskins, A Gupta, NH Segal. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016; 34(26): 3119–3125 https://doi.org/10.1200/JCO.2016.67.9761
pmid: 27269937
100
AO Kamphorst, A Wieland, T Nasti, S Yang, R Zhang, DL Barber, BT Konieczny, CZ Daugherty, L Koenig, K Yu, GL Sica, AH Sharpe, GJ Freeman, BR Blazar, LA Turka, TK Owonikoko, RN Pillai, SS Ramalingam, K Araki, R Ahmed. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017; 355(6332): 1423–1427 https://doi.org/10.1126/science.aaf0683
pmid: 28280249
101
E Hui, J Cheung, J Zhu, X Su, MJ Taylor, HA Wallweber, DK Sasmal, J Huang, JM Kim, I Mellman, RD Vale. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017; 355(6332): 1428–1433 https://doi.org/10.1126/science.aaf1292
pmid: 28280247
102
S Koyama, EA Akbay, YY Li, GS Herter-Sprie, KA Buczkowski, WG Richards, L Gandhi, AJ Redig, SJ Rodig, H Asahina, RE Jones, MM Kulkarni, M Kuraguchi, S Palakurthi, PE Fecci, BE Johnson, PA Janne, JA Engelman, SP Gangadharan, DB Costa, GJ Freeman, R Bueno, FS Hodi, G Dranoff, KK Wong, PS Hammerman. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7(1): 10501 https://doi.org/10.1038/ncomms10501
pmid: 26883990