1. Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China 2. Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou 310009, China 3. Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou 310009, China 4. Department of Psychiatry, The Second Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China 5. Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences,?National Institutes for Quantum and Radiological Science and Technology,?Anagawa 4-9-1, Inage-ku, Chiba, 263-8555, Japan
Panic disorder (PD) is an acute paroxysmal anxiety disorder with poorly understood pathophysiology. The dorsal periaqueductal gray (dPAG) is involved in the genesis of PD. However, the downstream neurofunctional changes of the dPAG during panic attacks have yet to be evaluated in vivo. In this study, optogenetic stimulation to the dPAG was performed to induce panic-like behaviors, and in vivo positron emission tomography (PET) imaging with 18F-flurodeoxyglucose (18F-FDG) was conducted to evaluate neurofunctional changes before and after the optogenetic stimulation. Compared with the baseline, post-optogenetic stimulation PET imaging demonstrated that the glucose metabolism significantly increased (P<0.001) in dPAG, the cuneiform nucleus, the cerebellar lobule, the cingulate cortex, the alveus of the hippocampus, the primary visual cortex, the septohypothalamic nucleus, and the retrosplenial granular cortex but significantly decreased (P<0.001) in the basal ganglia, the frontal cortex, the forceps minor corpus callosum, the primary somatosensory cortex, the primary motor cortex, the secondary visual cortex, and the dorsal lateral geniculate nucleus. Taken together, these data indicated that in vivo PET imaging can successfully detect downstream neurofunctional changes involved in the panic attacks after optogenetic stimulation to the dPAG.
. [J]. Frontiers of Medicine, 2019, 13(5): 602-609.
Xiao He, Chentao Jin, Mindi Ma, Rui Zhou, Shuang Wu, Haoying Huang, Yuting Li, Qiaozhen Chen, Mingrong Zhang, Hong Zhang, Mei Tian. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder. Front. Med., 2019, 13(5): 602-609.
O Tuescher, X Protopopescu, H Pan, M Cloitre, T Butler, M Goldstein, JC Root, A Engelien, D Furman, M Silverman, Y Yang, J Gorman, J LeDoux, D Silbersweig, E Stern. Differential activity of subgenual cingulate and brainstem in panic disorder and PTSD. J Anxiety Disord 2011; 25(2): 251–257 https://doi.org/10.1016/j.janxdis.2010.09.010
pmid: 21075593
3
L Goossens, N Leibold, R Peeters, G Esquivel, I Knuts, W Backes, M Marcelis, P Hofman, E Griez, K Schruers. Brainstem response to hypercapnia: a symptom provocation study into the pathophysiology of panic disorder. J Psychopharmacol 2014; 28(5): 449–456 https://doi.org/10.1177/0269881114527363
pmid: 24646808
4
Y Sakai, H Kumano, M Nishikawa, Y Sakano, H Kaiya, E Imabayashi, T Ohnishi, H Matsuda, A Yasuda, A Sato, M Diksic, T Kuboki. Cerebral glucose metabolism associated with a fear network in panic disorder. Neuroreport 2005; 16(9): 927–931 https://doi.org/10.1097/00001756-200506210-00010
pmid: 15931063
5
ML Boshuisen, GJ Ter Horst, AM Paans, AA Reinders, JA den Boer. rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 2002; 52(2): 126–135 https://doi.org/10.1016/S0006-3223(02)01355-0
pmid: 12114004
6
RP Iacono, BS Nashold Jr. Mental and behavioral effects of brain stem and hypothalamic stimulation in man. Hum Neurobiol 1982; 1(4): 273–279
pmid: 7185797
7
LJ Bertoglio, VC de Bortoli, H Zangrossi Jr. Cholecystokinin-2 receptors modulate freezing and escape behaviors evoked by the electrical stimulation of the rat dorsolateral periaqueductal gray. Brain Res 2007; 1156: 133–138 https://doi.org/10.1016/j.brainres.2007.04.038
pmid: 17498673
8
LC Schenberg, EC Vasquez, MB da Costa. Cardiac baroreflex dynamics during the defence reaction in freely moving rats. Brain Res 1993; 621(1): 50–58 https://doi.org/10.1016/0006-8993(93)90296-Y
pmid: 8221073
FA Moreira, PH Gobira, TG Viana, MA Vicente, H Zangrossi, FG Graeff. Modeling panic disorder in rodents. Cell Tissue Res 2013; 354(1): 119–125 https://doi.org/10.1007/s00441-013-1610-1
pmid: 23584609
11
LC Vargas, LC Schenberg. Long-term effects of clomipramine and fluoxetine on dorsal periaqueductal grey-evoked innate defensive behaviours of the rat. Psychopharmacology (Berl) 2001; 155(3): 260–268 https://doi.org/10.1007/s002130100698
pmid: 11432688
12
S Hogg, L Michan, M Jessa. Prediction of anti-panic properties of escitalopram in the dorsal periaqueductal grey model of panic anxiety. Neuropharmacology 2006; 51(1): 141–145 https://doi.org/10.1016/j.neuropharm.2006.03.009
pmid: 16678216
13
MV Fogaça, SF Lisboa, DC Aguiar, FA Moreira, FV Gomes, PC Casarotto, FS Guimarães. Fine-tuning of defensive behaviors in the dorsal periaqueductal gray by atypical neurotransmitters. Braz J Med Biol Res 2012; 45(4): 357–365 https://doi.org/10.1590/S0100-879X2012007500029
pmid: 22392189
14
TO Sergio, A Spiacci Jr, H Zangrossi Jr. Effects of dorsal periaqueductal gray CRF1- and CRF2-receptor stimulation in animal models of panic. Psychoneuroendocrinology 2014; 49: 321–330 https://doi.org/10.1016/j.psyneuen.2014.07.026
pmid: 25146701
15
F Ullah, T Dos Anjos-Garcia, J Mendes-Gomes, DH Elias-Filho, LL Falconi-Sobrinho, RL Freitas, AU Khan, R Oliveira, NC Coimbra. Connexions between the dorsomedial division of the ventromedial hypothalamus and the dorsal periaqueductal grey matter are critical in the elaboration of hypothalamically mediated panic-like behaviour. Behav Brain Res 2017; 319: 135–147 https://doi.org/10.1016/j.bbr.2016.11.026
pmid: 27856260
S Chen, H Zhou, S Guo, J Zhang, Y Qu, Z Feng, K Xu, X Zheng. Optogenetics based rat-robot control: optical stimulation encodes “Stop” and “Escape” commands. Ann Biomed Eng 2015; 43(8): 1851–1864 https://doi.org/10.1007/s10439-014-1235-x
pmid: 25567506
18
G Sandner, G Di Scala, B Rocha, MJ Angst. C-fos immunoreactivity in the brain following unilateral electrical stimulation of the dorsal periaqueductal gray in freely moving rats. Brain Res 1992; 573(2): 276–283 https://doi.org/10.1016/0006-8993(92)90773-3
pmid: 1504765
19
LW Lim, Y Temel, V Visser-Vandewalle, A Blokland, H Steinbusch. Fos immunoreactivity in the rat forebrain induced by electrical stimulation of the dorsolateral periaqueductal gray matter. J Chem Neuroanat 2009; 38(2): 83–96 https://doi.org/10.1016/j.jchemneu.2009.06.011
pmid: 19589381
20
PK Thanos, L Robison, EJ Nestler, R Kim, M Michaelides, MK Lobo, ND Volkow. Mapping brain metabolic connectivity in awake rats with mPET and optogenetic stimulation. J Neurosci 2013; 33(15): 6343–6349 https://doi.org/10.1523/JNEUROSCI.4997-12.2013
pmid: 23575833
21
Y Zhu, K Xu, C Xu, J Zhang, J Ji, X Zheng, H Zhang, M Tian. PET mapping for brain-computer interface stimulation of the ventroposterior medial nucleus of the thalamus in rats with implanted electrodes. J Nucl Med 2016; 57(7): 1141–1145 https://doi.org/10.2967/jnumed.115.171868
pmid: 26917709
22
Y Zhu, R Du, Y Zhu, Y Shen, K Zhang, Y Chen, F Song, S Wu, H Zhang, M Tian. PET mapping of neurofunctional changes in a posttraumatic stress disorder model. J Nucl Med 2016; 57(9): 1474–1477 https://doi.org/10.2967/jnumed.116.173443
pmid: 26985058
23
P Mergenthaler, U Lindauer, GA Dienel, A Meisel. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci 2013; 36(10): 587–597 https://doi.org/10.1016/j.tins.2013.07.001
pmid: 23968694
24
ND Volkow, GJ Wang, F Telang, JS Fowler, RZ Goldstein, N Alia-Klein, J Logan, C Wong, PK Thanos, Y Ma, K Pradhan. Inverse association between BMI and prefrontal metabolic activity in healthy adults. Obesity (Silver Spring) 2009; 17(1): 60–65 https://doi.org/10.1038/oby.2008.469
pmid: 18948965
25
AS Bittencourt, EM Nakamura-Palacios, H Mauad, S Tufik, LC Schenberg. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 2005; 133(4): 873–892 https://doi.org/10.1016/j.neuroscience.2005.03.012
pmid: 15916856
26
CC McIntyre, S Mori, DL Sherman, NV Thakor, JL Vitek. Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol 2004; 115(3): 589–595 https://doi.org/10.1016/j.clinph.2003.10.033
pmid: 15036055
27
RT LaLumiere. A new technique for controlling the brain: optogenetics and its potential for use in research and the clinic. Brain Stimul 2011; 4(1): 1–6 https://doi.org/10.1016/j.brs.2010.09.009
pmid: 21255749
28
O Menant, F Andersson, D Zelena, E Chaillou. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat 2016; 77: 110–120 https://doi.org/10.1016/j.jchemneu.2016.06.003
pmid: 27344962
29
DM Vianna, ML Brandão. Anatomical connections of the periaqueductal gray: specific neural substrates for different kinds of fear. Braz J Med Biol Res 2003; 36(5): 557–566 https://doi.org/10.1590/S0100-879X2003000500002
pmid: 12715074
30
SB Sébille, H Belaid, AC Philippe, A André, B Lau, C François, C Karachi, E Bardinet. Anatomical evidence for functional diversity in the mesencephalic locomotor region of primates. Neuroimage 2017; 147: 66–78 https://doi.org/10.1016/j.neuroimage.2016.12.011
pmid: 27956208
E Sillery, RG Bittar, MD Robson, TE Behrens, J Stein, TZ Aziz, H Johansen-Berg. Connectivity of the human periventricular-periaqueductal gray region. J Neurosurg 2005; 103(6): 1030–1034 https://doi.org/10.3171/jns.2005.103.6.1030
pmid: 16381189
33
VM Moers-Hornikx, JS Vles, LW Lim, M Ayyildiz, S Kaplan, AW Gavilanes, G Hoogland, HW Steinbusch, Y Temel. Periaqueductal grey stimulation induced panic-like behaviour is accompanied by deactivation of the deep cerebellar nuclei. Cerebellum 2011; 10(1): 61–69 https://doi.org/10.1007/s12311-010-0228-z
pmid: 21076996
34
A Stark-Inbar, E Dayan. Preferential encoding of movement amplitude and speed in the primary motor cortex and cerebellum. Hum Brain Mapp 2017; 38(12): 5970–5986 https://doi.org/10.1002/hbm.23802
pmid: 28885740
35
A Garakani, MS Buchsbaum, RE Newmark, C Goodman, CJ Aaronson, JM Martinez, Y Torosjan, KW Chu, JM Gorman. The effect of doxapram on brain imaging in patients with panic disorder. Eur Neuropsychopharmacol 2007; 17(10): 672–686 https://doi.org/10.1016/j.euroneuro.2007.04.002
pmid: 17560768
36
T Sobanski, G Wagner. Functional neuroanatomy in panic disorder: status quo of the research. World J Psychiatry 2017; 7(1): 12–33 https://doi.org/10.5498/wjp.v7.i1.12
pmid: 28401046
37
A Bisaga, JL Katz, A Antonini, CE Wright, C Margouleff, JM Gorman, D Eidelberg. Cerebral glucose metabolism in women with panic disorder. Am J Psychiatry 1998; 155(9): 1178–1183 https://doi.org/10.1176/ajp.155.9.1178
pmid: 9734539
38
D Bernal-Casas, HJ Lee, AJ Weitz, JH Lee. Studying brain circuit function with dynamic causal modeling for optogenetic fMRI. Neuron 2017; 93(3): 522–532.e5 https://doi.org/10.1016/j.neuron.2016.12.035
pmid: 28132829